cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A168076 Expansion of 1 - 3*(1-x-sqrt(1-2*x-3*x^2))/2.

Original entry on oeis.org

1, 0, -3, -3, -6, -12, -27, -63, -153, -381, -969, -2505, -6564, -17394, -46533, -125505, -340902, -931716, -2560401, -7070337, -19609146, -54597852, -152556057, -427642677, -1202289669, -3389281245, -9578183391, -27130207503, -77009455428, -219023318406
Offset: 0

Views

Author

Paul Barry, Nov 18 2009

Keywords

Comments

For n>0, a(n) = -3*A168049(n). Hankel transform is A168075. Another variant is A168073.

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(3*n-3)*a(n)+(1+2*n)*a(n+1)+(-n-2)*a(n+2), a(0) = 1, a(1) = 0, a(2) = -3},a(n),remember):
    map(f, [$0..60]); # Robert Israel, May 13 2018
  • Mathematica
    CoefficientList[Series[1 - 3*(1 - x - Sqrt[1 - 2*x - 3*x^2])/2, {x,0,50}] , x] (* G. C. Greubel, Jul 09 2016 *)
  • PARI
    x='x+O('x^99); Vec(1-3*(1-x-(1-2*x-3*x^2)^(1/2))/2) \\ Altug Alkan, May 13 2018
    
  • PARI
    A168076(n)=!n-3*sum(k=0,n\2-1, binomial(n-2,2*k)*binomial(2*k,k)/(k+1)) \\ M. F. Hasler, May 13 2018

Formula

a(n) = 0^n - 3*Sum_{k=0..floor((n-2)/2), C(n-2,2k)*A000108(k)}.
D-finite with recurrence: n*a(n) + (-2*n+3)*a(n-1) + 3*(-n+3)*a(n-2) = 0. - R. J. Mathar, Dec 03 2014
Recurrence (for n >= 3) follows from the differential equation (3*x^2+2*x-1)*y' - (3*x+1)*y = 3*x-1 satisfied by the g.f. - Robert Israel, May 13 2018
a(n) ~ -3^(n+1/2) / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Dec 03 2014
a(n) = -A168073(n) <= 0 for n >= 1. - M. F. Hasler, May 13 2018

Extensions

Comment corrected by Vaclav Kotesovec, Dec 03 2014

A168074 Duplicate of A061891.

Original entry on oeis.org

1, 1, 4, 7, 7, 10, 13, 13, 16, 19, 19, 22, 25, 25, 28, 31, 31, 34, 37, 37, 40, 43, 43, 46, 49, 49, 52, 55, 55, 58, 61, 61, 64, 67, 67, 70, 73, 73, 76, 79, 79, 82, 85, 85, 88, 91, 91, 94, 97, 97, 100, 103, 103, 106, 109, 109, 112, 115, 115, 118
Offset: 0

Views

Author

Paul Barry, Nov 18 2009

Keywords

Programs

  • Magma
    I:=[1,1,4,7]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Jul 10 2016
  • Mathematica
    LinearRecurrence[{1, 0, 1, -1}, {1, 1, 4, 7}, 50] (* G. C. Greubel, Jul 09 2016 *)
    CoefficientList[Series[(1 + 3 x^2 + 2 x^3) / ((1 - x)^2 (1 + x + x^2)), {x, 0, 60}], x] (* Vincenzo Librandi, Jul 10 2016 *)
  • PARI
    Vec((1+3*x^2+2*x^3)/((1-x)^2*(1+x+x^2)) + O(x^70)) \\ Michel Marcus, Dec 03 2014
    

Formula

G.f.: (1+3x^2+2x^3)/((1-x)^2*(1+x+x^2)).
a(n) = A168075(n)/(-3)^n.
a(n) = A061891(n). - Georg Fischer, Oct 14 2018

Extensions

Corrected by R. J. Mathar, Dec 03 2014
Showing 1-2 of 2 results.