A168081 Lucas sequence U_n(x,1) over the field GF(2)[x].
0, 1, 2, 5, 8, 21, 34, 81, 128, 337, 546, 1301, 2056, 5381, 8706, 20737, 32768, 86273, 139778, 333061, 526344, 1377557, 2228770, 5308753, 8388736, 22085713, 35782690, 85262357, 134742024, 352649221, 570556418, 1359020033, 2147483648, 5653987329, 9160491010
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Karl-Heinz Hofmann and Frederik P.J. Vandecasteele, Terms in binary, including a visualization.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, Bits[Xor](2*a(n-1), a(n-2))) end: seq(a(n), n=0..35); # Alois P. Heinz, Jun 16 2025
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := a[n] = BitXor[2 a[n - 1], a[n - 2]]; Table[a@ n, {n, 0, 32}] (* Michael De Vlieger, Dec 11 2015 *)
-
PARI
{ a=0; b=1; for(n=1,50, c=bitxor(2*b,a); a=b; b=c; print1(c,", "); ); }
-
PARI
{ a168081(n) = subst(lift(polchebyshev(n-1,2,x/2)*Mod(1,2)),x,2); } \\ Max Alekseyev, Jun 20 2025
-
Python
def A168081(n): return sum(int(not r & ~(2*n-1-r))*2**(n-1-r) for r in range(n)) # Chai Wah Wu, Jun 20 2022
Formula
For n>1, a(n) = (2*a(n-1)) XOR a(n-2).
a(n) = Sum_{k=0..n} (A049310(n,k) mod 2) * 2^k. - Max Alekseyev, Jun 20 2025
Comments