A168082 Fibonacci 11-step numbers.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2047, 4093, 8184, 16364, 32720, 65424, 130816, 261568, 523008, 1045760, 2091008, 4180992, 8359937, 16715781, 33423378, 66830392, 133628064, 267190704, 534250592, 1068239616
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Martin Burtscher, Igor Szczyrba, and RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Kai Wang, Identities for generalized enneanacci numbers, Generalized Fibonacci Sequences (2020).
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1,1,1,1,1).
Programs
-
Maple
a:= proc(n) option remember; `if`(n<11, 0, `if`(n=11, 1, add(a(n-j), j=1..11))) end: seq(a(n), n=1..50); # Alois P. Heinz, Sep 23 2020
-
Mathematica
With[{nn=11},LinearRecurrence[Table[1,{nn}],Join[Table[0,{nn-1}],{1}],50]] (* Harvey P. Dale, Aug 17 2013 *)
Formula
From Joerg Arndt, Sep 22 2020: (Start)
a(n) = Sum_{k=1..11} a(n-k).
G.f.: x^11/(1 - Sum_{k=1..11} x^k ).
a(n) = 2*a(n-1) - a(n-12). (End)
Another form of the g.f. f: f(z) = (z^(k-1)-z^(k))/(1-2*z+z^(k+1)) with k=11. a(n) = Sum_((-1)^i*binomial(n-10-11*i,i)*2^(n-10-12*i), i=0..floor((n-10)/12))-Sum_((-1)^i*binomial(n-11-11*i,i)*2^(n-11-12*i), i=0..floor((n-11)/12)) with Sum_(alpha(i),i=m..n) = 0 for m>n. - Richard Choulet, Feb 22 2010