cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168082 Fibonacci 11-step numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2047, 4093, 8184, 16364, 32720, 65424, 130816, 261568, 523008, 1045760, 2091008, 4180992, 8359937, 16715781, 33423378, 66830392, 133628064, 267190704, 534250592, 1068239616
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<11, 0,
          `if`(n=11, 1, add(a(n-j), j=1..11)))
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Sep 23 2020
  • Mathematica
    With[{nn=11},LinearRecurrence[Table[1,{nn}],Join[Table[0,{nn-1}],{1}],50]] (* Harvey P. Dale, Aug 17 2013 *)

Formula

From Joerg Arndt, Sep 22 2020: (Start)
a(n) = Sum_{k=1..11} a(n-k).
G.f.: x^11/(1 - Sum_{k=1..11} x^k ).
a(n) = 2*a(n-1) - a(n-12). (End)
Another form of the g.f. f: f(z) = (z^(k-1)-z^(k))/(1-2*z+z^(k+1)) with k=11. a(n) = Sum_((-1)^i*binomial(n-10-11*i,i)*2^(n-10-12*i), i=0..floor((n-10)/12))-Sum_((-1)^i*binomial(n-11-11*i,i)*2^(n-11-12*i), i=0..floor((n-11)/12)) with Sum_(alpha(i),i=m..n) = 0 for m>n. - Richard Choulet, Feb 22 2010