cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168083 Fibonacci 12-step numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4095, 8189, 16376, 32748, 65488, 130960, 261888, 523712, 1047296, 2094336, 4188160, 8375296, 16748544, 33492993, 66977797, 133939218, 267845688, 535625888, 1071120816
Offset: 1

Views

Author

Keywords

Comments

From Ruediger Jehn, Nov 30 2020: (Start)
a(n+12) is the number of compositions of n with no part greater than 12.
a(n+12) is the number of ways of throwing n with an unstated number of dodecahedra (here dice with numbers from 1 to 12).
(End)

Programs

  • Maple
    k:=12:for n from 0 to 50 do l(n):=sum((-1)^i*binomial(n-k+1-k*i,i)*2^(n-k+1-(k+1)*i),i=0..floor((n-k+1)/(k+1)))-sum((-1)^i*binomial(n-k-k*i,i)*2^(n-k-(k+1)*i),i=0..floor((n-k)/(k+1))):od:seq(l(n),n=0..50); a:=taylor((z^(k-1)-z^(k))/(1-2*z+z^(k+1)),z=0,51);for p from 0 to 50 do j(p):=coeff(a,z,p):od :seq(j(p),p=0..50); # Richard Choulet, Feb 22 2010
  • Mathematica
    a={1,0,0,0,0,0,0,0,0,0,0,0};Flatten[Prepend[Table[s=Plus@@a;a=RotateLeft[a];a[[ -1]]=s,{n,60}],Table[0,{m,Length[a]-1}]]]
    LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, 50]
    With[{nn=12},LinearRecurrence[Table[1,{nn}],Join[Table[0,{nn-1}],{1}], 50]] (* Harvey P. Dale, Aug 17 2013 *)

Formula

Another form of the g.f. f: f(z)= (z^(k-1)-z^(k))/(1-2*z+z^(k+1)) with k=12. a(n)=sum((-1)^i*binomial(n-k+1-k*i,i)*2^(n-k+1-(k+1)*i),i=0..floor((n-k+1)/(k+1)))-sum((-1)^i*binomial(n-k-k*i,i)*2^(n-k-(k+1)*i),i=0..floor((n-k)/(k+1))) with k=12 and convention sum(alpha(i),i=m..n)=0 for m>n. - Richard Choulet, Feb 22 2010