cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A122265 10th-order Fibonacci numbers: a(n+1) = a(n)+...+a(n-9) with a(0) = ... = a(8) = 0, a(9) = 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172, 16336, 32656, 65280, 130496, 260864, 521472, 1042432, 2083841, 4165637, 8327186, 16646200, 33276064, 66519472, 132973664, 265816832, 531372800, 1062224128
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 18 2006

Keywords

Comments

The (1,10)-entry of the matrix M^n, where M is the 10 X 10 matrix {{0,1,0,0,0, 0,0,0,0,0},{0,0,1,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0}, {0,0,0,0,0,1,0,0,0,0},{0,0,0,0,0,0,1,0,0,0},{0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0, 0,0,0,1,0},{0,0,0,0,0,0,0,0,0,1},{1,1,1,1,1,1,1,1,1,1}}.

Crossrefs

Cf. A257227, A257228 for primes in this sequence.

Programs

  • Maple
    with(linalg): p:=-1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9+x^10: M[1]:=transpose(companion(p,x)): for n from 2 to 40 do M[n]:=multiply(M[n-1],M[1]) od: seq(M[n][1,10],n=1..40);
    k:=10:for n from 0 to 50 do l(n):=sum((-1)^i*binomial(n-k+1-k*i,i)*2^(n-k+1-(k+1)*i),i=0..floor((n-k+1)/(k+1)))-sum((-1)^i*binomial(n-k-k*i,i)*2^(n-k-(k+1)*i),i=0..floor((n-k)/(k+1))):od:seq(l(n),n=0..50);k:=10:a:=taylor((z^(k-1)-z^(k))/(1-2*z+z^(k+1)),z=0,51);for p from 0 to 50 do j(p):=coeff(a,z,p):od :seq(j(p),p=0..50); # Richard Choulet, Feb 22 2010
  • Mathematica
    M = {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}; v[1] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; v[n_] := v[n] = M.v[n - 1]; a = Table[Floor[v[n][[1]]], {n, 1, 50}]
    a={1,0,0,0,0,0,0,0,0,0};Flatten[Prepend[Table[s=Plus@@a;a=RotateLeft[a];a[[ -1]]=s,{n,60}],Table[0,{m,Length[a]-1}]]] (* Vladimir Joseph Stephan Orlovsky, Nov 18 2009 *)
    LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, 50]  (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
    With[{nn=10},LinearRecurrence[Table[1,{nn}],Join[Table[0,{nn-1}],{1}],50]] (* Harvey P. Dale, Aug 17 2013 *)

Formula

a(n) = Sum_{j=1..10} a(n-j) for n>=10; a(n) = 0 for 0<=n<=8, a(9) = 1 (follows from the minimal polynomial of M; a Maple program based on this recurrence relation is much slower than the given Maple program, based on the definition).
G.f.: -x^9/(-1+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
Another form of the g.f. f: f(z)=(z^(k-1)-z^(k))/(1-2*z+z^(k+1)) with k=10. Then a(n)=sum((-1)^i*binomial(n-k+1-k*i,i)*2^(n-k+1-(k+1)*i),i=0..floor((n-k+1)/(k+1)))-sum((-1)^i*binomial(n-k-k*i,i)*2^(n-k-(k+1)*i),i=0..floor((n-k)/(k+1))) with k=10 and sum(alpha(i),i=m..n)=0 for m>n. - Richard Choulet, Feb 22 2010

Extensions

Edited by N. J. A. Sloane, Oct 29 2006 and Mar 05 2011

A168084 Fibonacci 13-step numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8191, 16381, 32760, 65516, 131024, 262032, 524032, 1048000, 2095872, 4191488, 8382464, 16763904, 33525760, 67047424, 134086657, 268156933, 536281106, 1072496696
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    k:=13:a:=taylor((z^(k-1)-z^(k))/(1-2*z+z^(k+1)),z=0,51);for p from 0 to 50 do j(p):=coeff(a,z,p):od :seq(j(p),p=0..50); k:=13:for n from 0 to 50 do l(n):=sum((-1)^i*binomial(n-k+1-k*i,i)*2^(n-k+1-(k+1)*i),i=0..floor((n-k+1)/(k+1)))-sum((-1)^i*binomial(n-k-k*i,i)*2^(n-k-(k+1)*i),i=0..floor((n-k)/(k+1))):od:seq(l(n),n=0..50); # Richard Choulet, Feb 22 2010
  • Mathematica
    a={1,0,0,0,0,0,0,0,0,0,0,0,0};Flatten[Prepend[Table[s=Plus@@a;a=RotateLeft[a];a[[ -1]]=s,{n,60}],Table[0,{m,Length[a]-1}]]]
    LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, 50]
    With[{nn=13},LinearRecurrence[Table[1,{nn}],Join[Table[0,{nn-1}],{1}],50]] (* Harvey P. Dale, Aug 17 2013 *)

Formula

Another form of the g.f. f: f(z)=(z^(k-1)-z^(k))/(1-2*z+z^(k+1)) with k=13. then a(n)=sum((-1)^i*binomial(n-k+1-k*i,i)*2^(n-k+1-(k+1)*i),i=0..floor((n-k+1)/(k+1)))-sum((-1)^i*binomial(n-k-k*i,i)*2^(n-k-(k+1)*i),i=0..floor((n-k)/(k+1))) with k=13 and convention sum(alpha(i),i=m..n)=0 for m>n. - Richard Choulet, Feb 22 2010

A105758 Indices of prime hexanacci (or Fibonacci 6-step) numbers A001592 (using offset -4).

Original entry on oeis.org

3, 36, 37, 92, 660, 6091, 8415, 11467, 13686, 38831, 49828, 97148
Offset: 1

Views

Author

T. D. Noe, Apr 22 2005

Keywords

Comments

No other n < 30000.
This sequence uses the convention of the Noe and Post reference. Their indexing scheme differs by 4 from the indices in A001592. Sequence A249635 lists the indices of the same primes (A105759) using the indexing scheme as defined in A001592. - Robert Price, Nov 02 2014 [Edited by M. F. Hasler, Apr 22 2018]
a(13) > 3*10^5. - Robert Price, Nov 02 2014

Crossrefs

Cf. A105759 (prime Fibonacci 6-step numbers), A249635 (= a(n) + 4), A001592.
Cf. A000045, A000073, A000078 (and A001631), A001591, A122189 (or A066178), A079262, A104144, A122265, A168082, A168083 (Fibonacci, tribonacci, tetranacci numbers and other generalizations).
Cf. A005478, A092836, A104535, A105757, A105761, ... (primes in these sequence).
Cf. A001605, A303263, A303264 (and A104534 and A247027), A248757 (and A105756), ... (indices of primes in A000045, A000073, A000078, ...).

Programs

  • Mathematica
    a={1, 0, 0, 0, 0, 0}; lst={}; Do[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s; If[PrimeQ[s], AppendTo[lst, n]], {n, 30000}]; lst

Formula

a(n) = A249635(n) - 4. A105759(n) = A001592(A249635(n)) = A001592(a(n) + 4). - M. F. Hasler, Apr 22 2018

Extensions

a(10)-a(12) from Robert Price, Nov 02 2014
Edited by M. F. Hasler, Apr 22 2018

A207539 Dodecanacci numbers (12th-order Fibonacci sequence): a(n) = a(n-1) +...+ a(n-12) with a(0)=...=a(11)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 23, 45, 89, 177, 353, 705, 1409, 2817, 5633, 11265, 22529, 45057, 90102, 180181, 360317, 720545, 1440913, 2881473, 5762241, 11523073, 23043329, 46081025, 92150785, 184279041, 368513025, 736935948, 1473691715
Offset: 0

Views

Author

Michael Burkhart, Feb 18 2012

Keywords

Crossrefs

Programs

  • Maple
    f12:=proc(n) option remember: if n<=12 then 1: else add(f12(n-i),i=1..12): fi: end:
  • Mathematica
    LinearRecurrence[Table[1, {12}], Table[1, {12}], 100]
  • PARI
    x='x+O('x^50); Vec((1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11 +10*x^12)/(1-2*x+x^13)) \\ G. C. Greubel, Jul 28 2017

Formula

G.f.: (1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11 +10*x^12)/(1 -2*x +x^13).

A249169 Fibonacci 16-step numbers, a(n) = a(n-1) + a(n-2) + ... + a(n-16).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65535, 131069, 262136, 524268, 1048528, 2097040, 4194048, 8388032, 16775936, 33551616, 67102720, 134204416, 268406784, 536809472, 1073610752, 2147205120, 4294377472, 8588689409
Offset: 15

Views

Author

Alan N. Inglis, Oct 22 2014

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<15, 0,
          `if`(n=15, 1, add(a(n-j), j=1..16)))
        end:
    seq(a(n), n=15..50);  # Alois P. Heinz, Oct 23 2014
  • Mathematica
    CoefficientList[Series[-1 /(x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 21 2014 *)

Formula

a(n) = a(n-1) + a(n-2) + ... + a(n-16).
G.f.: -x^15 / (x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5 +x^4+x^3+x^2+x-1). - Alois P. Heinz, Oct 23 2014
Showing 1-5 of 5 results.