A163551 13th-order Fibonacci numbers: a(n) = a(n-1) + ... + a(n-13) with a(1)=...=a(13)=1.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 25, 49, 97, 193, 385, 769, 1537, 3073, 6145, 12289, 24577, 49153, 98305, 196597, 393169, 786289, 1572481, 3144769, 6289153, 12577537, 25153537, 50304001, 100601857, 201191425, 402358273, 804667393
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Kai Wang, Identities for generalized enneanacci numbers, Generalized Fibonacci Sequences (2020).
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1,1,1,1,1,1,1).
Crossrefs
Programs
-
Mathematica
With[{c=Table[1,{13}]},LinearRecurrence[c,c,40]] (* Harvey P. Dale, Aug 09 2013 *)
-
PARI
x='x+O('x^50); Vec((1-x^2 -2*x^3-3*x^4 -4*x^5-5*x^6 -6*x^7-7*x^8 -8*x^9 -9*x^10 -10*x^11 -11*x^12) / (1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13)) \\ G. C. Greubel, Jul 28 2017
Formula
a(n) = a(n-1)+a(n-2)+...+a(n-13) for n > 12, a(0)=a(1)=...=a(12)=1.
G.f.: (-1)*(-1+x^2+2*x^3+3*x^4+4*x^5+5*x^6+6*x^7+7*x^8+8*x^9+9*x^10 +10*x^11 +11*x^12) / (1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13). - Michael Burkhart, Feb 18 2012
Extensions
Values adapted to the definition by R. J. Mathar, Aug 01 2009