cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A257227 Indices of primes in the 10th-order Fibonacci number sequence, A122265.

Original entry on oeis.org

11, 361, 373, 2440, 14002, 68990
Offset: 1

Views

Author

Robert Price, Apr 18 2015

Keywords

Comments

a(7) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; step=10; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Flatten[Position[LinearRecurrence[{1,1,1,1,1,1,1,1,1,1},{0,0,0,0,0,0,0,0,0,1},69000],?PrimeQ]]-1 (* _Harvey P. Dale, Dec 08 2017 *)

A257228 Primes in the 10th-order Fibonacci numbers A122265.

Original entry on oeis.org

2, 3876345660966505581780035851822613413637045687942554538584103751904155528656612320450718024564637501177857, 15784273697726525594915158437704910106795669967932151790483411869827615323130147795459165734845011296559523773
Offset: 1

Views

Author

Robert Price, Apr 18 2015

Keywords

Comments

a(4) is too large to display here. It has 731 digits and is the 2440th term in A122265.

Crossrefs

Programs

  • Mathematica
    a={0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; step=10; offset=0; lst={}; For[n=step+offset,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A251759 10-step Fibonacci sequence starting with 0,0,0,0,0,0,0,0,1,0.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1022, 2043, 4084, 8164, 16320, 32624, 65216, 130368, 260608, 520960, 1041409, 2081796, 4161549, 8319014, 16629864, 33243408, 66454192, 132843168, 265555968, 530851328, 1061181696, 2121321983
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Comments

a(n+10) equals the number of n-length binary words avoiding runs of zeros of lengths 10i+9, (i=0,1,2,...). - Milan Janjic, Feb 26 2015

Crossrefs

Other 10-step Fibonacci sequences are A251760, A251761, A251762, A251763, A251764, A251765, A251766.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {10}], {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}, 45] (* Michael De Vlieger, Dec 08 2014 *)

Formula

a(n+10) = a(n)+a(n+1)+a(n+2)+a(n+3) +a(n+4)+a(n+5)+a(n+6)+a(n+7) +a(n+8) +a(n+9).
G.f.: x^8*(x-1)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10) . - R. J. Mathar, Mar 28 2025
a(n) = A122265(n+1)-A122265(n). - R. J. Mathar, Mar 28 2025

A251760 10-step Fibonacci sequence starting with 0,0,0,0,0,0,0,1,0,0.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 4, 8, 16, 32, 64, 128, 255, 510, 1020, 2039, 4076, 8148, 16288, 32560, 65088, 130112, 260096, 519937, 1039364, 2077708, 4153377, 8302678, 16597208, 33178128, 66323696, 132582304, 265034496, 529808896, 1059097855, 2117156346
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 10-step Fibonacci sequences are A251759, A251761, A251762, A251763, A251764, A251765, A251766.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {10}], {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, 45] (* Michael De Vlieger, Dec 08 2014 *)

Formula

a(n+10) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7)+a(n+8) +a(n+9).
G.f.: x^7*(-1+x+x^2)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10) . - R. J. Mathar, Mar 28 2025
a(n) = A122265(n+2)-A122265(n+1)-A122265(n). - R. J. Mathar, Mar 28 2025

A105758 Indices of prime hexanacci (or Fibonacci 6-step) numbers A001592 (using offset -4).

Original entry on oeis.org

3, 36, 37, 92, 660, 6091, 8415, 11467, 13686, 38831, 49828, 97148
Offset: 1

Views

Author

T. D. Noe, Apr 22 2005

Keywords

Comments

No other n < 30000.
This sequence uses the convention of the Noe and Post reference. Their indexing scheme differs by 4 from the indices in A001592. Sequence A249635 lists the indices of the same primes (A105759) using the indexing scheme as defined in A001592. - Robert Price, Nov 02 2014 [Edited by M. F. Hasler, Apr 22 2018]
a(13) > 3*10^5. - Robert Price, Nov 02 2014

Crossrefs

Cf. A105759 (prime Fibonacci 6-step numbers), A249635 (= a(n) + 4), A001592.
Cf. A000045, A000073, A000078 (and A001631), A001591, A122189 (or A066178), A079262, A104144, A122265, A168082, A168083 (Fibonacci, tribonacci, tetranacci numbers and other generalizations).
Cf. A005478, A092836, A104535, A105757, A105761, ... (primes in these sequence).
Cf. A001605, A303263, A303264 (and A104534 and A247027), A248757 (and A105756), ... (indices of primes in A000045, A000073, A000078, ...).

Programs

  • Mathematica
    a={1, 0, 0, 0, 0, 0}; lst={}; Do[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s; If[PrimeQ[s], AppendTo[lst, n]], {n, 30000}]; lst

Formula

a(n) = A249635(n) - 4. A105759(n) = A001592(A249635(n)) = A001592(a(n) + 4). - M. F. Hasler, Apr 22 2018

Extensions

a(10)-a(12) from Robert Price, Nov 02 2014
Edited by M. F. Hasler, Apr 22 2018

A302990 a(n) = index of first odd prime number in the (n-th)-order Fibonacci sequence Fn, or 0 if no such index exists.

Original entry on oeis.org

0, 0, 4, 6, 9, 10, 40, 14, 17, 19, 361, 23, 90, 26, 373, 47, 288, 34, 75, 38, 251, 43, 67, 47, 74, 310, 511, 151534, 57, 20608, 1146, 62, 197, 94246, 9974, 287, 271172, 758
Offset: 0

Views

Author

Jacques Tramu, Apr 17 2018

Keywords

Comments

Fn is defined by: Fn(0) = Fn(1) = ... = Fn(n-2) = 0, Fn(n-1) = 1, and Fn(k+1) = Fn(k) + Fn(k-1) + ... + Fn(k-n+1).
In general, Fn(k) is odd iff k == -1 or -2 (mod n+1), therefore a(n) = k*(n+1) - (1 or 2) for all n. Since Fn(n-1) = F(n) = 1, we must have a(n) >= 2n. Since Fn(k) = 2^(k-n) for n <= k < 2n, Fn(2n) = 2^n-1, so a(n) = 2n exactly for the Mersenne prime exponents A000043, while a(n) = 2n+1 when n is not in A000043 but n+1 is in A050414. - M. F. Hasler, Apr 18 2018
Further terms of the sequence: a(38) > 62000, a(39) > 72000, a(40) = 285, a(41) > 178000, a(42) = 558, a(44) = 19529, a(46) = 33369, a(47) = 239, a(48) = 6368, a(53) = 2860, a(54) = 2418, a(58) = 176, a(59) = 18418, a(60) = 1463, a(61) = 122, a(62) = 8755, a(63) = 5118, a(64) = 25089, a(65) = 988, a(66) = 333, a(67) = 406, a(70) = 1632, a(74) = 374, a(76) = 13704, a(77) = 4991, a(86) = 347, a(89) = 178, a(92) = 1114, a(93) = 187, a(98) = 395, a(100) > 80000; a(n) > 10^4 for all other n up to 100. - Jacques Tramu and M. F. Hasler, Apr 18 2018

Examples

			a(2) = 4 because F2 (Fibonacci) = 0, 1, 1, 2, 3, 5, 8, ... and F2(4) = 3 is prime.
a(3) = 6 because F3 (tribonacci) = 0, 0, 1, 1, 2, 4, 7, 13, ... and F3(6) = 7 is prime.
a(4) = 9 because F4 (tetranacci) = 0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, ...  and F4(9) = 29 is prime.
From _M. F. Hasler_, Apr 18 2018: (Start)
We see that Fn(k) = 2^(k-n) for n <= k < 2n and thus Fn(2n) = 2^n-1, so a(n) = 2n exactly for the Mersenne prime exponents A000043.
a(n) = 2n + 1 when 2^(n+1) - 3 is prime (n+1 in A050414) but 2^n-1 is not, i.e., n = 4, 8, 9, 11, 21, 23, 28, 93, 115, 121, 149, 173, 212, 220, 232, 265, 335, 451, 544, 688, 693, 849, 1735, ...
For other primes we have: a(29) = 687*30 - 2, a(37) = 20*38 - 2, a(41) > 10^4, a(43) > 10^4, a(47) = 5*48 - 1, a(53) = 53*54 - 2, a(59) = 307*60 - 2, a(67) = 6*67 - 1. (End)
		

Crossrefs

Cf. A000045 (F2), A000073 (F3), A000078 (F4), A001591 (F5), A001592 (F6), A122189(F7), A079262 (F8), A104144 (F9), A122265 (F10).
(According to the definition, F0 = A000004 and F1 = A000012.)
Cf. A001605 (indices of prime numbers in F2).

Programs

  • PARI
    A302990(n,L=oo,a=vector(n+1,i,if(i1 && for(i=-2+2*n+=1,L, ispseudoprime(a[i%n+1]=2*a[(i-1)%n+1]-a[i%n+1]) && return(i))} \\ Testing primality only for i%n>n-3 is not faster, even for large n. - M. F. Hasler, Apr 17 2018; improved Apr 18 2018

Formula

a(n) == -1 or -2 (mod n+1). a(n) >= 2n, with equality iff n is in A000043. a(n) <= 2n+1 for n+1 in A050414. - M. F. Hasler, Apr 18 2018

Extensions

a(29) from Jacques Tramu, Apr 19 2018
a(33) from Daniel Suteu, Apr 20 2018
a(36) from Jacques Tramu, Apr 25 2018

A172320 11th column of A172119.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2047, 4092, 8180, 16352, 32688, 65344, 130624, 261120, 521984, 1043456, 2085888, 4169729, 8335366, 16662552, 33308752, 66584816, 133104288, 266077952, 531894784, 1063267584
Offset: 0

Views

Author

Richard Choulet, Jan 31 2010

Keywords

Examples

			a(12)=C(12,12)*2^12-C(2,1)*2^1=4092.
		

Crossrefs

Programs

  • Maple
    k:=10:taylor(1/(1-2*z+z^(k+1)),z=0,30); for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od:k: seq(b(n),n=0..30):od;

Formula

a(n)=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))) with k=10.
G.f: f(z)=1/(1-2*z+z^(11)).
a(n+11)=2*a(n+10)-a(n).
Showing 1-7 of 7 results.