cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168141 a(n) = pi(n + 1) - pi(n - 2), where pi is the prime counting function.

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 19 2009

Keywords

Comments

Conjecture: a(n) = 2 for infinitely many n. This is equivalent to the twin prime conjecture. - Andrew Slattery, Apr 26 2020

Crossrefs

Programs

  • Maple
    A168141 := proc(n) numtheory[pi](n+1)-numtheory[pi](n-2) ; end proc: seq(A168141(n),n=1..120) ; # R. J. Mathar, Nov 19 2009
    # second Maple program:
    a:= n-> add(`if`(isprime(n+i), 1, 0), i=-1..1):
    seq(a(n), n=1..120);  # Alois P. Heinz, Apr 28 2020
  • Mathematica
    Table[PrimePi[n + 1] - PrimePi[n - 2], {n, 100}] (* Wesley Ivan Hurt, Apr 26 2020 *)
  • PARI
    a(n) = primepi(n+1) - primepi(n-2); \\ Michel Marcus, Apr 27 2020

Formula

From Alois P. Heinz, Apr 28 2020: (Start)
a(n) = 2 <=> n in { 2,3 } union { A014574 }.
a(n) = 0 <=> n in A079364. (End)