cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168246 Inverse Weigh transform of n!.

Original entry on oeis.org

1, 2, 4, 19, 92, 576, 4156, 34178, 314368, 3199936, 35703996, 433422071, 5687955724, 80256879068, 1211781887796, 19496946568898, 333041104402860, 6019770247224496, 114794574818830716, 2303332661419442569, 48509766592884311132, 1069983257387168051076
Offset: 1

Views

Author

Vladeta Jovovic, Nov 21 2009

Keywords

Crossrefs

Cf. A000142, A112354, A261052 (Weigh transform of n!).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; n! -b(n, n-1) end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 11 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    a[n_] := a[n] = n! - b[n, n - 1];
    Array[a, 30] (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz *)
  • PARI
    seq(n)={dirdiv(Vec(log(1+x*Ser(vector(n, n, n!)))), -vector(n, n, (-1)^n/n))} \\ Andrew Howroyd, Jun 22 2018

Formula

Product_{k>=1} (1+x^k)^a(k) = Sum_{n>=0} n! x^n.
a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for coefficients see A113869. - Vaclav Kotesovec, Nov 27 2020