A168330 Period 2: repeat [3, -2].
3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (0,1).
Crossrefs
Programs
-
Magma
&cat[[3,-2]: n in [1..42]];
-
Magma
[n eq 1 select 3 else -Self(n-1)+1:n in [1..84]];
-
Magma
[(-5*(-1)^n+1)/2: n in [1..100]]; // Vincenzo Librandi, Jul 19 2016
-
Mathematica
LinearRecurrence[{0, 1}, {3, -2}, 25] (* G. C. Greubel, Jul 18 2016 *) PadRight[{},120,{3,-2}] (* Harvey P. Dale, Oct 05 2016 *)
-
PARI
a(n)=3-n%2*5 \\ Charles R Greathouse IV, Jul 13 2016
Formula
a(n) = (-5*(-1)^n + 1)/2.
a(n+1) - a(n) = 5*(-1)^n.
a(n) = -a(n-1) + 1 for n > 1; a(1) = 3.
a(n) = a(n-2) for n > 2; a(1) = 3, a(2) = -2.
G.f.: x*(3 - 2*x)/((1-x)*(1+x)).
a(n) = A049071(n). - R. J. Mathar, Nov 25 2009
E.g.f.: (1/2)*(1 - exp(-x))*(5 + exp(x)). - G. C. Greubel, Jul 18 2016
Comments