A168351 a(n) = n^5*(n+1)/2.
0, 1, 48, 486, 2560, 9375, 27216, 67228, 147456, 295245, 550000, 966306, 1617408, 2599051, 4033680, 6075000, 8912896, 12778713, 17950896, 24760990, 33600000, 44925111, 59266768, 77236116, 99532800, 126953125, 160398576, 200884698
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
Magma
[n^5*(n+1)/2: n in [0..30]]; // Vincenzo Librandi, Aug 28 2011
-
Mathematica
Table[n^5*(n + 1)/2, {n, 0, 40}] (* Wesley Ivan Hurt, Aug 13 2015 *)
-
SageMath
def A168351(n): return n^4*binomial(n+1,2) print([A168351(n) for n in range(41)]) # G. C. Greubel, Mar 20 2025
Formula
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} Sum_{l=1..n} Sum_{m=1..n} (i+j+k-l-m). - Wesley Ivan Hurt, Aug 13 2015
From G. C. Greubel, Mar 20 2025: (Start)
G.f.: x*(1 + 41*x + 171*x^2 + 131*x^3 + 16*x^4)/(1-x)^7.
E.g.f.: (1/2)*x*(2 + 46*x + 115*x^2 + 75*x^3 + 16*x^4 + x^5)*exp(x). (End)