cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A158497 Triangle T(n,k) formed by the coordination sequences and the number of leaves for trees.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 12, 1, 4, 12, 36, 108, 1, 5, 20, 80, 320, 1280, 1, 6, 30, 150, 750, 3750, 18750, 1, 7, 42, 252, 1512, 9072, 54432, 326592, 1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890
Offset: 0

Views

Author

Thomas Wieder, Mar 20 2009

Keywords

Comments

Consider the k-fold Cartesian products CP(n,k) of the vector A(n) = [1, 2, 3, ..., n].
An element of CP(n,k) is a n-tuple T_t of the form T_t = [i_1, i_2, i_3, ..., i_k] with t=1, .., n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j = i_(j+1): T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j = i_(j+1)).
The test on i_j > i_(j+1) generates A158498. One gets the Pascal triangle A007318 if the indicator function tests whether for any two i_j, i_(j+1) in T_t one has i_j >= i_(j+1).
Use of other indicator functions can also calculate the Bell numbers A000110, A000045 or A000108.

Examples

			Array, A(n, k) = n*(n-1)^(k-1) for n > 1, A(n, k) = 1 otherwise, begins as:
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  2,   2,    2,     2,      2,       2,        2,        2, ... A040000;
  1,  3,   6,   12,    24,     48,      96,      192,      384, ... A003945;
  1,  4,  12,   36,   108,    324,     972,     2916,     8748, ... A003946;
  1,  5,  20,   80,   320,   1280,    5120,    20480,    81920, ... A003947;
  1,  6,  30,  150,   750,   3750,   18750,    93750,   468750, ... A003948;
  1,  7,  42,  252,  1512,   9072,   54432,   326592,  1959552, ... A003949;
  1,  8,  56,  392,  2744,  19208,  134456,   941192,  6588344, ... A003950;
  1,  9,  72,  576,  4608,  36864,  294912,  2359296, 18874368, ... A003951;
  1, 10,  90,  810,  7290,  65610,  590490,  5314410, 47829690, ... A003952;
  1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, ............. A003953;
  1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, ............. A003954;
  1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, ............. A170732;
  ... ;
The triangle begins as:
  1
  1, 1;
  1, 2,  2;
  1, 3,  6,  12;
  1, 4, 12,  36,  108;
  1, 5, 20,  80,  320,  1280;
  1, 6, 30, 150,  750,  3750,  18750;
  1, 7, 42, 252, 1512,  9072,  54432, 326592;
  1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344;
  ...;
T(3,3) = 12 counts the triples (1,2,1), (1,2,3), (1,3,1), (1,3,2), (2,1,2), (2,1,3), (2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3,2,3) out of a total of 3^3 = 27 triples in the CP(3,3).
		

Crossrefs

Array rows n: A170733 (n=14), ..., A170769 (n=50).
Columns k: A000012(n) (k=0), A000027(n) (k=1), A002378(n-1) (k=2), A011379(n-1) (k=3), A179824(n) (k=4), A101362(n-1) (k=5), 2*A168351(n-1) (k=6), 2*A168526(n-1) (k=7), 2*A168635(n-1) (k=8), 2*A168675(n-1) (k=9), 2*A170783(n-1) (k=10), 2*A170793(n-1) (k=11).
Diagonals k: A055897 (k=n), A055541 (k=n-1), A373395 (k=n-2), A379612 (k=n-3).
Sums: (-1)^n*A065440(n) (signed row).

Programs

  • Magma
    A158497:= func< n,k | k le 1 select n^k else n*(n-1)^(k-1) >;
    [A158497(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2025
    
  • Mathematica
    A158497[n_, k_]:= If[n<2 || k==0, 1, n*(n-1)^(k-1)];
    Table[A158497[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2025 *)
  • SageMath
    def A158497(n,k): return n^k if k<2 else n*(n-1)^(k-1)
    print(flatten([[A158497(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 18 2025

Formula

T(n, k) = (n-1)^(k-1) + (n-1)^k = n*A079901(n-1,k-1), k > 0.
Sum_{k=0..n} T(n,k) = (n*(n-1)^n - 2)/(n-2), n > 2.

Extensions

Edited by R. J. Mathar, Mar 31 2009
More terms added by G. C. Greubel, Mar 18 2025

A168432 a(n) = n^5*(n^7 + 1)/2.

Original entry on oeis.org

0, 1, 2064, 265842, 8389120, 122071875, 1088395056, 6920652004, 34359754752, 141214797765, 500000050000, 1569214268886, 4458050348544, 11649042746887, 28346956456560, 64873169325000, 140737488879616, 291311119324809
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Cf. A168351.

Programs

  • Magma
    [n^5*(n^7+1)/2: n in [0..30]]; // Vincenzo Librandi, Aug 29 2011
    
  • Mathematica
    Table[n^5*(n^7 + 1)/2, {n,0,30}] (* G. C. Greubel, Jul 22 2016 *)
    CoefficientList[Series[x (1 +2051 x +239088 x^2 +5093880 x^3 +33159402 x^4 + 81255702 x^5 +81256584 x^6 +33159072 x^7 +5093805 x^8 +239183 x^9 +2032 x^10)/(1-x)^13, {x,0,30}], x] (* Vincenzo Librandi, Jul 23 2016 *)
  • SageMath
    def A168432(n): return n^5*(n^7+1)//2
    print(A168432(n) for n in range(31)) # G. C. Greubel, Mar 20 2025

Formula

G.f.: x*(1 + 2051*x + 239088*x^2 + 5093880*x^3 + 33159402*x^4 + 81255702*x^5 + 81256584*x^6 + 33159072*x^7 + 5093805*x^8 + 239183*x^9 + 2032*x^10)/(1-x)^13. - Vincenzo Librandi, Jul 23 2016
E.g.f.: (1/2)*x*(2 + 2062*x + 86551*x^2 + 611511*x^3 + 1379401*x^4 + 1323652*x^5 + 627396*x^6 + 159027*x^7 + 22275*x^8 + 1705*x^9 + 66*x^10 + x^11)*exp(x). - G. C. Greubel, Mar 20 2025

A168462 a(n) = n^5*(n^8 + 1)/2.

Original entry on oeis.org

0, 1, 4112, 797283, 33554944, 610353125, 6530350896, 48444513607, 274877923328, 1270932943689, 5000000050000, 17261356152491, 53496602813952, 151437553481773, 396857386895984, 973097534559375, 2251799814209536
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Cf. A168351.

Programs

Formula

From G. C. Greubel, Mar 20 2025: (Start)
G.f.: x*(1 +4098*x +739806*x^2 +22766810*x^3 +211640895*x^4 +752810148*x^5 +1137586884*x^6 +752810148*x^7 +211640895*x^8 +22766810*x^9 +739806*x^10 +4098*x^11 + x^12)/(1-x)^14.
E.g.f.: (1/2)*x*(2 +4110*x +261650*x^2 +2532540*x^3 +7508502*x^4 +9321312*x^5 +5715424*x^6 +1899612*x^7 +359502*x^8 +39325*x^9 +2431*x^10 +78*x^11 +x^12)*exp(x). (End)

A168471 a(n) = n^5*(n^9 + 1)/2.

Original entry on oeis.org

0, 1, 8208, 2391606, 134218240, 3051759375, 39182085936, 339111544828, 2199023271936, 11438396257005, 50000000050000, 189874916872146, 641959232398848, 1968688193035291, 5556003413047920, 14596463013075000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Cf. A168351.

Programs

Formula

G.f.: x* (1 + 8193*x + 2268591*x^2 + 99205535*x^3 + 1285871130*x^4 + 6421630698*x^5 + 13985589534*x^6 + 13985586558*x^7 + 6421632165*x^8 + 1285871045*x^9 + 99205251*x^10 + 2268723*x^11 + 8176*x^12)/(1 - x)^15. - Vincenzo Librandi, Jul 24 2016

A168507 a(n) = n^5*(n^10 + 1)/2.

Original entry on oeis.org

0, 1, 16400, 7174575, 536871424, 15258790625, 235092496176, 2373780763375, 17592186060800, 102945566076849, 500000000050000, 2088624084788351, 7703510787417600, 25592946507231025, 77784047779175024, 218946945190809375, 576460752303947776
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Programs

  • Magma
    [n^5*(n^10+1)/2: n in [0..30]]; // Vincenzo Librandi, Aug 29 2011
    
  • Mathematica
    Table[n^5*(n^10+1)/2, {n,0,30}] (* G. C. Greubel, Jul 24 2016 *)
    LinearRecurrence[{16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1},{0,1,16400,7174575,536871424,15258790625,235092496176, 2373780763375,17592186060800,102945566076849,500000000050000, 2088624084788351,7703510787417600,25592946507231025,77784047779175024, 218946945190809375}, 30] (* Harvey P. Dale, Apr 25 2017 *)
  • SageMath
    def A168507(n): return n^5*(n^10 +1)//2
    print([A168507(n) for n in range(31)]) # G. C. Greubel, Mar 20 2025

Formula

G.f.: x*(1 + 16384*x + 6912295*x^2 + 424045664*x^3 + 7520614661*x^4 + 51388498688*x^5 + 155693801427*x^6 + 223769405760*x^7 + 155693801427*x^8 + 51388498688*x^9 + 7520614661*x^10 + 424045664*x^11 + 6912295*x^12 + 16384*x^13 + x^14)/(1 - x)^16. - Vincenzo Librandi, Jul 24 2016
a(n) = A006003(n^5). - G. C. Greubel, Mar 20 2025
Showing 1-5 of 5 results.