cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168352 Products of 6 distinct odd primes.

Original entry on oeis.org

255255, 285285, 345345, 373065, 435435, 440895, 451605, 465465, 504735, 533715, 555555, 569415, 596505, 608685, 615615, 636405, 645645, 672945, 680295, 692835, 705705, 719355, 726495, 752115, 770385, 780045, 795795, 803985, 805035, 811965, 823515, 838695, 844305, 858585
Offset: 1

Views

Author

Keywords

Examples

			255255 = 3*5*7*11*13*17
285285 = 3*5*7*11*13*19
345345 = 3*5*7*11*13*23
435435 = 3*5*7*11*13*29
		

Crossrefs

Cf. A046391 (5 distinct odd primes).

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1,1,1,1,1}&&FactorInteger[n][[1,1]]>2; lst={};Do[If[f[n],AppendTo[lst,n]],{n,6*9!}];lst
  • PARI
    is(n) = {n%2 == 1 && factor(n)[,2]~ == [1,1,1,1,1,1]} \\ David A. Corneth, Aug 26 2020
    
  • Python
    from sympy import primefactors, factorint
    print([n for n in range(1, 1000000, 2) if len(primefactors(n)) == 6 and max(list(factorint(n).values())) == 1]) # Karl-Heinz Hofmann, Mar 01 2023
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A168352(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,2,1,6)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

A067885 INTERSECT A005408. [R. J. Mathar, Nov 24 2009]

Extensions

Definition corrected by R. J. Mathar, Nov 24 2009
More terms from David A. Corneth, Aug 26 2020