A168352 Products of 6 distinct odd primes.
255255, 285285, 345345, 373065, 435435, 440895, 451605, 465465, 504735, 533715, 555555, 569415, 596505, 608685, 615615, 636405, 645645, 672945, 680295, 692835, 705705, 719355, 726495, 752115, 770385, 780045, 795795, 803985, 805035, 811965, 823515, 838695, 844305, 858585
Offset: 1
Examples
255255 = 3*5*7*11*13*17 285285 = 3*5*7*11*13*19 345345 = 3*5*7*11*13*23 435435 = 3*5*7*11*13*29
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1,1,1,1,1}&&FactorInteger[n][[1,1]]>2; lst={};Do[If[f[n],AppendTo[lst,n]],{n,6*9!}];lst
-
PARI
is(n) = {n%2 == 1 && factor(n)[,2]~ == [1,1,1,1,1,1]} \\ David A. Corneth, Aug 26 2020
-
Python
from sympy import primefactors, factorint print([n for n in range(1, 1000000, 2) if len(primefactors(n)) == 6 and max(list(factorint(n).values())) == 1]) # Karl-Heinz Hofmann, Mar 01 2023
-
Python
from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi def A168352(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,2,1,6))) def bisection(f, kmin=0, kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024
Formula
Extensions
Definition corrected by R. J. Mathar, Nov 24 2009
More terms from David A. Corneth, Aug 26 2020