cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168363 Squares and cubes of primes.

Original entry on oeis.org

4, 8, 9, 25, 27, 49, 121, 125, 169, 289, 343, 361, 529, 841, 961, 1331, 1369, 1681, 1849, 2197, 2209, 2809, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16129, 17161, 18769, 19321, 22201
Offset: 1

Views

Author

Keywords

Comments

Primitive elements for powerful numbers; every powerful is product of these numbers. The representation is not necessarily unique.

Crossrefs

Programs

  • Mathematica
    m=30000;Union[Prime[Range[PrimePi[m^(1/2)]]]^2,Prime[Range[PrimePi[m^(1/3)]]]^3] (* Vladimir Joseph Stephan Orlovsky, Apr 11 2011 *)
    With[{nn=50},Take[Union[Flatten[Table[{n^2,n^3},{n,Prime[Range[ nn]]}]]],nn]] (* Harvey P. Dale, Feb 26 2015 *)
  • PARI
    for(n=1,40000,fm=factor(n);if(matsize(fm)[1]==1&(fm[1,2]==2||fm[1,2]==3),print1(n",")))
    
  • PARI
    is(n)=my(k=isprimepower(n)); k && k<4 \\ Charles R Greathouse IV, May 24 2013
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot
    def A168363(n):
        def f(x): return n+x-primepi(isqrt(x))-primepi(integer_nthroot(x,3)[0])
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return int(m) # Chai Wah Wu, Aug 09 2024

Formula

A178254(a(n)) = 2. - Reinhard Zumkeller, May 24 2010
Sum_{n>=1} 1/a(n) = P(2) + P(3) = 0.6270100593..., where P is the prime zeta function. - Amiram Eldar, Dec 21 2020