cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168380 Row sums of A168281.

Original entry on oeis.org

2, 4, 12, 20, 38, 56, 88, 120, 170, 220, 292, 364, 462, 560, 688, 816, 978, 1140, 1340, 1540, 1782, 2024, 2312, 2600, 2938, 3276, 3668, 4060, 4510, 4960, 5472, 5984, 6562, 7140, 7788, 8436, 9158, 9880, 10680, 11480, 12362, 13244, 14212, 15180, 16238, 17296, 18448, 19600, 20850, 22100
Offset: 1

Views

Author

Paul Curtz, Nov 24 2009

Keywords

Comments

The atomic numbers of the augmented alkaline earth group in Charles Janet's spiral periodic table are 0 and the first eight terms of this sequence (see Stewart reference). - Alonso del Arte, May 13 2011
Maximum number of 123 patterns in an alternating permutation of length n+3. - Lara Pudwell, Jun 09 2019

Examples

			From _Lara Pudwell_, Jun 09 2019: (Start)
a(1)=2. The alternating permutation of length 1+3=4 with the maximum number of copies of 123 is 1324.  The two copies are 124 and 134.
a(2)=4.  The alternating permutation of length 2+3=5 with the maximum number of copies of 123 is 13254.  The four copies are 124, 125, 134, and 135.
a(3)=12. The alternating permutation of length 3+3=6 with the maximum number of copies of 123 is 132546.  The twelve copies are 124, 125, 126, 134, 135, 136, 146, 156, 246, 256, 346, and 356. (End)
		

Programs

  • Magma
    [(n+1)*(3+2*n^2+4*n-3*(-1)^n)/12: n in [1..50] ]; // Vincenzo Librandi, Aug 06 2011
    
  • Mathematica
    LinearRecurrence[{2,1,-4,1,2,-1},{2, 4, 12, 20, 38, 56},50] (* G. C. Greubel, Jul 19 2016 *)
    Table[(n + 1) (3 + 2 n^2 + 4 n - 3 (-1)^n)/12, {n, 50}] (* Michael De Vlieger, Jul 20 2016 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,2,1,-4,1,2]^(n-1)*[2;4;12;20;38;56])[1,1] \\ Charles R Greathouse IV, Jul 21 2016

Formula

a(n) = 2*A005993(n-1).
a(n) = (n+1)*(3 + 2*n^2 + 4*n - 3*(-1)^n)/12.
a(n+1) - a(n) = A093907(n) = A137583(n+1).
a(2n+1) = A035597(n+1), a(2n) = A002492(n).
a(n) = A099956(n-1), 2 <= n <= 7.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: 2*x*(1 + x^2) / ( (1+x)^2*(x-1)^4 ).
a(n) = A000292(n) + A027656(n-1). - Paul Curtz, Oct 26 2012
E.g.f.: (1/12)*(3*(x - 1) + (3 + 15*x + 12*x^2 + 2*x^3)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 19 2016