A168380 Row sums of A168281.
2, 4, 12, 20, 38, 56, 88, 120, 170, 220, 292, 364, 462, 560, 688, 816, 978, 1140, 1340, 1540, 1782, 2024, 2312, 2600, 2938, 3276, 3668, 4060, 4510, 4960, 5472, 5984, 6562, 7140, 7788, 8436, 9158, 9880, 10680, 11480, 12362, 13244, 14212, 15180, 16238, 17296, 18448, 19600, 20850, 22100
Offset: 1
Examples
From _Lara Pudwell_, Jun 09 2019: (Start) a(1)=2. The alternating permutation of length 1+3=4 with the maximum number of copies of 123 is 1324. The two copies are 124 and 134. a(2)=4. The alternating permutation of length 2+3=5 with the maximum number of copies of 123 is 13254. The four copies are 124, 125, 134, and 135. a(3)=12. The alternating permutation of length 3+3=6 with the maximum number of copies of 123 is 132546. The twelve copies are 124, 125, 126, 134, 135, 136, 146, 156, 246, 256, 346, and 356. (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Robert Dougherty-Bliss, Experimental Methods in Number Theory and Combinatorics, Ph. D. Dissertation, Rutgers Univ. (2024). See p. 4.
- Lara Pudwell, Packing patterns in restricted permutations, 2019.
- Lara Pudwell, From permutation patterns to the periodic table, Notices of the American Mathematical Society. 67.7 (2020), 994-1001.
- Philip Stewart, Charles Janet: unrecognized genius of the Periodic System. Foundations of Chemistry (2010), p. 9.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Magma
[(n+1)*(3+2*n^2+4*n-3*(-1)^n)/12: n in [1..50] ]; // Vincenzo Librandi, Aug 06 2011
-
Mathematica
LinearRecurrence[{2,1,-4,1,2,-1},{2, 4, 12, 20, 38, 56},50] (* G. C. Greubel, Jul 19 2016 *) Table[(n + 1) (3 + 2 n^2 + 4 n - 3 (-1)^n)/12, {n, 50}] (* Michael De Vlieger, Jul 20 2016 *)
-
PARI
a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,2,1,-4,1,2]^(n-1)*[2;4;12;20;38;56])[1,1] \\ Charles R Greathouse IV, Jul 21 2016
Formula
a(n) = 2*A005993(n-1).
a(n) = (n+1)*(3 + 2*n^2 + 4*n - 3*(-1)^n)/12.
a(n) = A099956(n-1), 2 <= n <= 7.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: 2*x*(1 + x^2) / ( (1+x)^2*(x-1)^4 ).
E.g.f.: (1/12)*(3*(x - 1) + (3 + 15*x + 12*x^2 + 2*x^3)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 19 2016
Comments