A168429 a(n) = 4^n mod 11.
1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Joshua Ide and Marc S. Renault, Power Fibonacci Sequences, Fib. Q. 50(2), 2012, 175-179.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
Crossrefs
See also A036117.
Programs
-
Mathematica
Table[Mod[4^n, 11], {n, 0, 50}] (* G. C. Greubel, Mar 05 2016 *) PowerMod[4,Range[0,100],11] (* or *) PadRight[{},100,{1,4,5,9,3}] (* Harvey P. Dale, Jul 02 2021 *)
-
PARI
a(n)=4^n%11 \\ Charles R Greathouse IV, Oct 16 2015
-
Sage
[power_mod(4, n, 11) for n in range(0, 95)]
Formula
a(n) = a(n-5). G.f.: (1+4*x+5*x^2+9*x^3+3*x^4)/((1-x) * (1+x+x^2+x^3+x^4)). - R. J. Mathar, Apr 13 2010
Comments