cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168429 a(n) = 4^n mod 11.

Original entry on oeis.org

1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, 9, 3
Offset: 0

Views

Author

Zerinvary Lajos, Nov 25 2009

Keywords

Comments

Period 5: repeat [1, 4, 5, 9, 3].

Crossrefs

See also A036117.

Programs

  • Mathematica
    Table[Mod[4^n, 11], {n, 0, 50}] (* G. C. Greubel, Mar 05 2016 *)
    PowerMod[4,Range[0,100],11] (* or *) PadRight[{},100,{1,4,5,9,3}] (* Harvey P. Dale, Jul 02 2021 *)
  • PARI
    a(n)=4^n%11 \\ Charles R Greathouse IV, Oct 16 2015
  • Sage
    [power_mod(4, n, 11) for n in range(0, 95)]
    

Formula

a(n) = a(n-5). G.f.: (1+4*x+5*x^2+9*x^3+3*x^4)/((1-x) * (1+x+x^2+x^3+x^4)). - R. J. Mathar, Apr 13 2010