cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A036117 a(n) = 2^n mod 11.

Original entry on oeis.org

1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7
Offset: 0

Views

Author

Keywords

Comments

a(k) = k has only one solution, namely k=7. - Jon Perry, Oct 30 2014
As 2 is a primitive root of 11, all integers 1 through 10 are present. - Jon Perry, Oct 30 2014

Examples

			2^6 = 64 = 66 - 2 == -2 mod 11 == 9 mod 11, so a(6) = 9.
		

References

  • H. Cohn, A Second Course in Number Theory, Wiley, NY, 1962, p. 256.
  • I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.

Crossrefs

Cf. A000079 (2^n), A008830, A168429.

Programs

Formula

a(n) = a(n-1) - a(n-5) + a(n-6). - R. J. Mathar, Apr 13 2010
G.f.: (1+x+2*x^2+4*x^3-3*x^4+6*x^5)/ ((1-x) * (1+x) * (x^4-x^3+x^2-x+1)). - R. J. Mathar, Apr 13 2010
a(n+10) = a(n). - Jon Perry, Oct 30 2014
a(n+5) = 11 - a(n) for all n in Z. - Michael Somos, Oct 17 2018

A010691 Period 2: repeat (1,10).

Original entry on oeis.org

1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10
Offset: 0

Views

Author

Keywords

Comments

Regular continued fraction of (5+sqrt 35)/10. - R. J. Mathar, Nov 21 2011
Sequence is an infinite palindrome in two ways (numbers and English names): ONE, TEN, ONE, TEN, ONE, TEN, ONE, ... . - Eric Angelini, Sep 16 2023

Crossrefs

Programs

  • Magma
    [10^n mod 11: n in [0..80]]; // Vincenzo Librandi, Aug 24 2011
  • Maple
    g:=(1+10*z)/((1-z^2)): gser:=series(g, z=0, 66): seq((coeff(gser, z, n)), n=0..65); # Zerinvary Lajos, Feb 25 2009
  • Mathematica
    PadRight[{},100,{1,10}] (* Harvey P. Dale, Aug 27 2013 *)

Formula

a(n) = -9/2*(-1)^n + 11/2.
G.f.: (1+10*z)/(1-z^2). - Zerinvary Lajos, Feb 25 2009
a(n) = 10^n mod 11. - M. F. Hasler, Mar 10 2011
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 10/a(n-1). See also A010695.
a(n) = 11 - a(n-1). See also A010712. (End)

A187466 a(n) = 9^n mod 11.

Original entry on oeis.org

1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 10 2011

Keywords

Comments

Period 5: repeat [1, 9, 4, 3, 5].

Crossrefs

Programs

Formula

G.f.: (5*x^4 + 3*x^3 + 4*x^2 + 9*x + 1)/(1 - x^5). - Chai Wah Wu, Jun 04 2016
a(n) = a(n-5) for n>4. - Wesley Ivan Hurt, Jun 11 2016

A266973 a(n) = 4^n mod 17.

Original entry on oeis.org

1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16
Offset: 0

Views

Author

Vincenzo Librandi, Apr 06 2016

Keywords

Comments

Period 4: repeat [1, 4, 16, 13].

Crossrefs

Cf. similar sequences of the type 4^n mod p, where p is a prime: A010685 (5), A153727 (7), A168429 (11), A168430 (13), this sequence (17), A187532 (19).

Programs

  • Magma
    [Modexp(4, n, 17): n in [0..100]];
  • Maple
    A266973:=n->power(4,n) mod 17: seq(A266973(n), n=0..100); # Wesley Ivan Hurt, Jun 29 2016
  • Mathematica
    PowerMod[4, Range[0, 100], 17]

Formula

G.f.: (1+4*x+16*x^2+13*x^3)/(1-x^4).
a(n) = a(n-4) for n>3.
From Wesley Ivan Hurt, Jun 29 2016: (Start)
a(n) = (34 - 3*(5 + 3*I)*I^(-n) - 3*(5 - 3*I)*I^n)/4 where I=sqrt(-1).
a(n) = (17 - 15*cos(n*Pi/2) - 9*sin(n*Pi/2))/2. (End)

A268271 Primes p such that there is a Fibonacci-type sequence (mod p) that begins with (1,b) and encounters all quadratic residues of p in the first (p-1)/2 iterations (for some b).

Original entry on oeis.org

11, 19, 29, 31, 59, 71, 79, 89, 101, 131, 179, 181, 191, 229, 239, 251, 271, 311, 349, 359, 379, 401, 419, 431, 439, 479, 491, 499, 509, 571, 599, 631, 659, 719, 739, 751, 761, 839, 941, 971, 1019, 1021, 1039, 1051, 1061, 1091, 1109, 1171, 1229, 1249, 1259, 1319, 1361, 1399
Offset: 1

Views

Author

Michel Marcus, Mar 02 2016

Keywords

Examples

			p=11 is a term since, modulo 11, the sequence 1, 4, 5, 9, 3 satisfies 5=4+1, 9=5+4, 3=9+5, 1=9+3, ..., with a period of (11-1)/2 = 5.
		

Crossrefs

Subsequence of A045468.
Cf. A003147 (similar sequence for a different period).
Cf. A168429, A070373 (examples of such Fibonacci-type sequences).

Programs

  • PARI
    findr(p) = {for (k=1, (p-1)/2, if ((k^2 % p) == 5, return(k)););}
    isok(p) = {if ((p % 2) && isprime(p), pm = p % 5; if ((pm == 1) || (pm == 4), rf = findr(p);(znorder(Mod((1+rf)/2, p)) == (p-1)/2) || (znorder(Mod((1-rf)/2, p)) == (p-1)/2);););}
Showing 1-5 of 5 results.