cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A010695 Period 2: repeat (2,5).

Original entry on oeis.org

2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5
Offset: 0

Views

Author

Keywords

Comments

Also decimal expansion of 25/99.
Continued fraction expansion of A176052. - R. J. Mathar, Mar 08 2012
Periodic part of the partial quotients of the continued fraction expansion of sqrt(7/5), which starts [1, 5, 2, 5, 2, 5, ...]. - Hugo Pfoertner, Jan 10 2025

Crossrefs

Cf. A010674 (2^(1-(-1)^n) - 1).
Cf. A010691.

Programs

  • Magma
    &cat [[2,5]^^50]; // Bruno Berselli, Dec 29 2015
  • Mathematica
    PadRight[{}, 100, {2, 5}] (* Paolo Xausa, Jan 16 2025 *)
  • Maxima
    makelist(if evenp(n) then 2 else 5, n, 0, 80); /* Martin Ettl, Nov 09 2012 */
    

Formula

G.f.: (2+5*x)/((1-x)*(1+x)). - R. J. Mathar, Nov 21 2011
a(n) = 2^(1-(-1)^n) + 1. - Bruno Berselli, Dec 29 2015
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 10/a(n-1). See also A010691.
a(n) = 7 - a(n-1). See also A010702. (End)

Extensions

Edited by Bruno Berselli, Dec 29 2015

A040029 Continued fraction for sqrt(35).

Original entry on oeis.org

5, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1
Offset: 0

Views

Author

Keywords

Examples

			5.9160797830996160425673282... = 5 + 1/(1 + 1/(10 + 1/(1 + 1/(10 + ...)))). - _Harry J. Smith_, Jun 04 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 275-276.

Crossrefs

Cf. A010490 (decimal expansion), A010691.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[35],300] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2011 *)
    PadRight[{5},120,{10,1}] (* Harvey P. Dale, Mar 23 2021 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 22000); x=contfrac(sqrt(35)); for (n=0, 20000, write("b040029.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 04 2009

Formula

From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2^e) = 10, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 9/2^s). (End)
G.f.: (5 + x + 5*x^2)/(1 - x^2). - Stefano Spezia, Jul 27 2025

A288697 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 494", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 1, 0, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1
Offset: 0

Views

Author

Robert Price, Jun 13 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 494; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

A187466 a(n) = 9^n mod 11.

Original entry on oeis.org

1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 9, 4, 3, 5, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 10 2011

Keywords

Comments

Period 5: repeat [1, 9, 4, 3, 5].

Crossrefs

Programs

Formula

G.f.: (5*x^4 + 3*x^3 + 4*x^2 + 9*x + 1)/(1 - x^5). - Chai Wah Wu, Jun 04 2016
a(n) = a(n-5) for n>4. - Wesley Ivan Hurt, Jun 11 2016

A173261 Array T(n,k) read by antidiagonals: T(n,2k)=1, T(n,2k+1)=n, n>=2, k>=0.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 5, 1, 3, 1, 1, 6, 1, 4, 1, 2, 1, 7, 1, 5, 1, 3, 1, 1, 8, 1, 6, 1, 4, 1, 2, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 13, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 14, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2
Offset: 2

Views

Author

Paul Curtz, Feb 14 2010

Keywords

Comments

One may define another array B(n,0) = -1, B(n,k) = T(n,k-1) + 2*B(n,k-1), n>=2, which also starts in columns k>=0, as follows:
-1, -1, 0, 1, 4, 9, 20, 41, 84, 169, 340, 681, 1364 ...: A084639;
-1, -1, 1, 3, 9, 19, 41, 83, 169, 339, 681, 1363, 2729;
-1, -1, 2, 5, 14, 29, 62, 125, 254, 509, 1022, 2045, 4094;
-1, -1, 3, 7, 19, 39, 83, 167, 339, 679, 1363, 2727, 5459 ...: -A173114;
B(n,k) = (n-1)*A001045(k) - T(n,k).
First differences are B(n,k+1) - B(n,k) = (n-1)*A001045(k).

Examples

			The array T(n,k) starts in row n=2 with columns k>=0 as:
  1,  2, 1,  2, 1,  2, 1,  2, 1,  2, 1,  2 ... A000034;
  1,  3, 1,  3, 1,  3, 1,  3, 1,  3, 1,  3 ... A010684;
  1,  4, 1,  4, 1,  4, 1,  4, 1,  4, 1,  4 ... A010685;
  1,  5, 1,  5, 1,  5, 1,  5, 1,  5, 1,  5 ... A010686;
  1,  6, 1,  6, 1,  6, 1,  6, 1,  6, 1,  6 ... A010687;
  1,  7, 1,  7, 1,  7, 1,  7, 1,  7, 1,  7 ... A010688;
  1,  8, 1,  8, 1,  8, 1,  8, 1,  8, 1,  8 ... A010689;
  1,  9, 1,  9, 1,  9, 1,  9, 1,  9, 1,  9 ... A010690;
  1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10 ... A010691.
Antidiagonal triangle begins as:
  1;
  1,  2;
  1,  3,  1;
  1,  4,  1,  2;
  1,  5,  1,  3,  1;
  1,  6,  1,  4,  1,  2;
  1,  7,  1,  5,  1,  3,  1;
  1,  8,  1,  6,  1,  4,  1,  2;
  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 13,  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 14,  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= (1/2)*((n+3) - (n+1)*(-1)^k);
    Table[T[n-k, k], {n,2,17}, {k,2,n}]//Flatten (* G. C. Greubel, Dec 03 2021 *)
  • Sage
    flatten([[(1/2)*((n-k+3) - (n-k+1)*(-1)^k) for k in (2..n)] for n in (2..17)]) # G. C. Greubel, Dec 03 2021

Formula

From G. C. Greubel, Dec 03 2021: (Start)
T(n, k) = (1/2)*((n+3) - (n+1)*(-1)^k).
Sum_{k=0..n} T(n-k, k) = A024206(n).
Sum_{k=0..floor((n+2)/2)} T(n-2*k+2, k) = (1/16)*(2*n^2 4*n -5*(1 +(-1)^n) + 4*sin(n*Pi/2)) (diagonal sums).
T(2*n-2, n) = A093178(n). (End)
Showing 1-5 of 5 results.