cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A010674 Period 2: repeat (0,3).

Original entry on oeis.org

0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0
Offset: 0

Views

Author

Keywords

Comments

Also decimal expansion of 1/33 = .030303030...

Crossrefs

Cf. A010680 (1/11), A010695 (2^(1 - (-1)^n) + 1).

Programs

Formula

a(n) = (3/2)*(1 - (-1)^n) = 3*(n mod 2). - Paolo P. Lava, Oct 20 2006
a(n) = A010698(n)/2 - 1. - Martin Ettl, Nov 11 2012
a(n) = 2^(1 - (-1)^n) - 1. - Bruno Berselli, Dec 29 2015
From Chai Wah Wu, Jun 04 2016: (Start)
a(n) = a(n-2) for n >= 2.
G.f.: 3*x/(1 - x^2). (End)
E.g.f.: 3*sinh(x). - Ilya Gutkovskiy, Jun 04 2016

Extensions

More terms from Paolo P. Lava, Oct 20 2006

A010702 Period 2: repeat (3,4).

Original entry on oeis.org

3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of A176102. - R. J. Mathar, Mar 08 2012
Also decimal expansion of 34/99. - Nicolas Bělohoubek, Nov 12 2021

Crossrefs

Cf. A047355 (partial sums), A176102.

Programs

Formula

G.f.: (3+4*x)/(1-x^2). - Jaume Oliver Lafont, Mar 20 2009
a(n) = floor((n+1)*7/2) - floor((n)*7/2). - Hailey R. Olafson, Jul 23 2014
a(n) = 3 + (n mod 2) = 4 - ((n+1) mod 2). - Wesley Ivan Hurt, Jul 24 2014
From Nicolas Bělohoubek, Nov 12 2021: (Start)
a(n) = 12/a(n-1). See also A010696.
a(n) = 7 - a(n-1). See also A010695. (End)
a(n) = (7-(-1)^n)/2. - Aaron J Grech, Jul 28 2024

A010691 Period 2: repeat (1,10).

Original entry on oeis.org

1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10
Offset: 0

Views

Author

Keywords

Comments

Regular continued fraction of (5+sqrt 35)/10. - R. J. Mathar, Nov 21 2011
Sequence is an infinite palindrome in two ways (numbers and English names): ONE, TEN, ONE, TEN, ONE, TEN, ONE, ... . - Eric Angelini, Sep 16 2023

Crossrefs

Programs

  • Magma
    [10^n mod 11: n in [0..80]]; // Vincenzo Librandi, Aug 24 2011
  • Maple
    g:=(1+10*z)/((1-z^2)): gser:=series(g, z=0, 66): seq((coeff(gser, z, n)), n=0..65); # Zerinvary Lajos, Feb 25 2009
  • Mathematica
    PadRight[{},100,{1,10}] (* Harvey P. Dale, Aug 27 2013 *)

Formula

a(n) = -9/2*(-1)^n + 11/2.
G.f.: (1+10*z)/(1-z^2). - Zerinvary Lajos, Feb 25 2009
a(n) = 10^n mod 11. - M. F. Hasler, Mar 10 2011
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 10/a(n-1). See also A010695.
a(n) = 11 - a(n-1). See also A010712. (End)

A059855 Period of continued fraction for sqrt(n^2+4), n >= 1.

Original entry on oeis.org

1, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2
Offset: 1

Views

Author

Labos Elemer, Feb 27 2001

Keywords

Comments

From Jianing Song, May 01 2021: (Start)
The old name was "Quotient cycle length of sqrt(n^2+4)."
Essentially the same as A010695 and A021400. (End)

Examples

			For even n, sqrt(n^2+4) = [n; n/2, 2*n], hence a(n) = 2.
For odd n > 1, sqrt(n^2+4) = [n; (n-1)/2, 1, 1, (n-1)/2, 2*n], hence a(n) = 5.
		

Crossrefs

Period of continued fraction for sqrt(n^2+k): A059853 (k=3), this sequence (k=4), A059854 (k=5).

Programs

  • Maple
    with(numtheory): [seq(nops(cfrac(sqrt(k^2+4), 'periodic', 'quotients')[2]), k=1..100)];
  • Mathematica
    a[n_] := Length @ ContinuedFraction[Sqrt[n^2 + 4]][[2]]; Array[a, 100] (* Amiram Eldar, May 13 2020 *)

Formula

a(n) = 2 for even n, a(n) = 5 for odd n > 1.
a(n) = A003285(n^2+4). - Jianing Song, May 01 2021

A176052 Decimal expansion of (5+sqrt(35))/5.

Original entry on oeis.org

2, 1, 8, 3, 2, 1, 5, 9, 5, 6, 6, 1, 9, 9, 2, 3, 2, 0, 8, 5, 1, 3, 4, 6, 5, 6, 5, 8, 3, 1, 2, 3, 2, 3, 4, 0, 9, 6, 8, 3, 1, 0, 0, 2, 4, 6, 1, 5, 8, 8, 6, 8, 0, 6, 4, 5, 7, 5, 9, 4, 3, 9, 3, 3, 8, 2, 8, 5, 6, 4, 4, 9, 1, 8, 2, 1, 1, 3, 0, 6, 0, 7, 3, 5, 3, 1, 5, 0, 5, 0, 5, 4, 3, 6, 6, 2, 1, 8, 3, 5, 6, 1, 7, 7, 2
Offset: 1

Views

Author

Klaus Brockhaus, Apr 07 2010

Keywords

Comments

Continued fraction expansion of (5+sqrt(35))/5 is A010695.

Examples

			(5+sqrt(35))/5 = 2.18321595661992320851...
		

Crossrefs

Cf. A010490 (decimal expansion of sqrt(35)), A010695 (repeat 2, 5).

A021400 Decimal expansion of 1/396.

Original entry on oeis.org

0, 0, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2
Offset: 0

Views

Author

Keywords

Examples

			0.0025252525252525252525252525252525252525252525252525...
		

Crossrefs

A010695 shifted right.

Programs

  • Mathematica
    First[RealDigits[1/396, 10, 100, -1]] (* or *)
    PadRight[{0, 0}, 100, {2, 5}] (* Paolo Xausa, Aug 13 2025 *)

A176317 Decimal expansion of (5+sqrt(35))/2.

Original entry on oeis.org

5, 4, 5, 8, 0, 3, 9, 8, 9, 1, 5, 4, 9, 8, 0, 8, 0, 2, 1, 2, 8, 3, 6, 6, 4, 1, 4, 5, 7, 8, 0, 8, 0, 8, 5, 2, 4, 2, 0, 7, 7, 5, 0, 6, 1, 5, 3, 9, 7, 1, 7, 0, 1, 6, 1, 4, 3, 9, 8, 5, 9, 8, 3, 4, 5, 7, 1, 4, 1, 1, 2, 2, 9, 5, 5, 2, 8, 2, 6, 5, 1, 8, 3, 8, 2, 8, 7, 6, 2, 6, 3, 5, 9, 1, 5, 5, 4, 5, 8, 9, 0, 4, 4, 3, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Continued fraction expansion of (5+sqrt(35))/2 is A010695.

Examples

			(5+sqrt(35))/2 = 5.45803989154980802128...
		

Crossrefs

Cf. A010490 (decimal expansion of sqrt(35)), A010695 (repeat 5, 2).

Programs

  • Magma
    SetDefaultRealField(RealField(120)); (5 + Sqrt(35))/2; // G. C. Greubel, Nov 26 2019
    
  • Maple
    evalf( (5 + sqrt(35))/2, 120); # G. C. Greubel, Nov 26 2019
  • Mathematica
    RealDigits[(5+Sqrt[35])/2,10,120][[1]] (* Harvey P. Dale, Sep 21 2012 *)
  • PARI
    default(realprecision, 120); (5 + sqrt(35))/2 \\ G. C. Greubel, Nov 26 2019
    
  • Sage
    numerical_approx((5 + sqrt(35))/2, digits=120) # G. C. Greubel, Nov 26 2019
Showing 1-7 of 7 results.