cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A021037 Duplicate of A010674.

Original entry on oeis.org

0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0
Offset: 0

Views

Author

Keywords

A047208 Numbers that are congruent to {0, 4} mod 5.

Original entry on oeis.org

0, 4, 5, 9, 10, 14, 15, 19, 20, 24, 25, 29, 30, 34, 35, 39, 40, 44, 45, 49, 50, 54, 55, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 114, 115, 119, 120, 124, 125, 129, 130, 134, 135, 139, 140, 144, 145, 149
Offset: 1

Views

Author

Keywords

Comments

Also solutions to 3^x + 5^x == 2 (mod 11). - Cino Hilliard, May 18 2003

Crossrefs

Cf. A001622, A010674, A010685 (first differences), A274406.

Programs

  • Magma
    [(5*(n-1) + 3*((n-1) mod 2))/2: n in [1..100]]; // G. C. Greubel, Nov 23 2021
    
  • Mathematica
    {#,#+4}&/@(5*Range[0,30])//Flatten (* Harvey P. Dale, Apr 05 2019 *)
  • PARI
    forstep(n=0,200,[4,1],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
    
  • Sage
    [(5*(n-1) +3*((n-1)%2))/2 for n in (1..100)] # G. C. Greubel, Nov 23 2021

Formula

From R. J. Mathar, Jan 24 2009: (Start)
G.f.: x^2*(4+x)/((1-x)^2*(1+x)).
a(n) = a(n-2) + 5. (End)
a(n) = 5*n - 6 - a(n-1) (with a(1)=0). - Vincenzo Librandi, Nov 18 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k), with b(0)=4 and b(k) = A020714(k-1) = 5*2^(k-1) for k>0. - Philippe Deléham, Oct 17 2011
a(n) = ceiling((5/3)*ceiling(3*n/2)). - Clark Kimberling, Jul 04 2012
a(n) = (5*(n-1) + 3*(n-1 mod 2))/2 = (5*(n-1) + A010674(n-1))/2. - G. C. Greubel, Nov 23 2021
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + log(phi)/(2*sqrt(5)) - sqrt(1+2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: 1 + ((5*x - 7/2)*exp(x) + (3/2)*exp(-x))/2. - David Lovler, Aug 23 2022

A350814 Numbers m such that the largest digit in the decimal expansion of 1/m is 3.

Original entry on oeis.org

3, 30, 33, 75, 300, 303, 330, 333, 429, 750, 813, 3000, 3003, 3030, 3125, 3300, 3330, 3333, 4290, 4329, 7500, 7575, 8130, 30000, 30003, 30030, 30300, 30303, 31250, 33000, 33300, 33330, 33333, 42900, 43290, 46875, 75000, 75075, 75750, 76923, 81103, 81300, 300000
Offset: 1

Views

Author

Bernard Schott, Jan 30 2022

Keywords

Comments

If m is a term, 10*m is also a term.
3 is the only prime up to 2.6*10^8 (see comments in A333237).
Some subsequences:
{3, 30, 300, ...} = A093138 \ {1}.
{3, 33, 333, ...} = A002277 \ {0}.
{3, 33, 303, 3003, ...} = 3 * A000533.
{3, 303, 30303, 3030303, ...} = 3 * A094028.

Examples

			As 1/33 = 0.0303030303..., 33 is a term.
As 1/75 = 0.0133333333..., 75 is a term.
As 1/429 = 0.002331002331002331..., 429 is a term.
		

Crossrefs

Similar with largest digit k: A333402 (k=1), A341383 (k=2), A333237 (k=9).
Subsequences: A002277 \ {0}, A093138 \ {1}.
Decimal expansion: A010701 (1/3), A010674 (1/33).

Programs

  • Mathematica
    Select[Range[10^5], Max[RealDigits[1/#][[1]]] == 3 &] (* Amiram Eldar, Jan 30 2022 *)
  • Python
    from fractions import Fraction
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def repeating_decimals_expr(f, digits_only=False):
        """ returns repeating decimals of Fraction f as the string aaa.bbb[ccc].
            returns only digits if digits_only=True.
        """
        a, b = f.as_integer_ratio()
        m2, m5 = multiplicity(2,b), multiplicity(5,b)
        r = max(m2,m5)
        k, m = 10**r, 10**n_order(10,b//2**m2//5**m5)-1
        c = k*a//b
        s = str(c).zfill(r)
        if digits_only:
            return s+str(m*k*a//b-c*m)
        else:
            w = len(s)-r
            return s[:w]+'.'+s[w:]+'['+str(m*k*a//b-c*m)+']'
    def A350814_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda m:max(repeating_decimals_expr(Fraction(1,m),digits_only=True)) == '3',count(max(startvalue,1)))
    A350814_list = list(islice(A350814_gen(),10)) # Chai Wah Wu, Feb 07 2022

Extensions

More terms from Amiram Eldar, Jan 30 2022

A010695 Period 2: repeat (2,5).

Original entry on oeis.org

2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5
Offset: 0

Views

Author

Keywords

Comments

Also decimal expansion of 25/99.
Continued fraction expansion of A176052. - R. J. Mathar, Mar 08 2012
Periodic part of the partial quotients of the continued fraction expansion of sqrt(7/5), which starts [1, 5, 2, 5, 2, 5, ...]. - Hugo Pfoertner, Jan 10 2025

Crossrefs

Cf. A010674 (2^(1-(-1)^n) - 1).
Cf. A010691.

Programs

  • Magma
    &cat [[2,5]^^50]; // Bruno Berselli, Dec 29 2015
  • Mathematica
    PadRight[{}, 100, {2, 5}] (* Paolo Xausa, Jan 16 2025 *)
  • Maxima
    makelist(if evenp(n) then 2 else 5, n, 0, 80); /* Martin Ettl, Nov 09 2012 */
    

Formula

G.f.: (2+5*x)/((1-x)*(1+x)). - R. J. Mathar, Nov 21 2011
a(n) = 2^(1-(-1)^n) + 1. - Bruno Berselli, Dec 29 2015
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 10/a(n-1). See also A010691.
a(n) = 7 - a(n-1). See also A010702. (End)

Extensions

Edited by Bruno Berselli, Dec 29 2015

A010698 Period 2: repeat (2,8).

Original entry on oeis.org

2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2
Offset: 0

Views

Author

Keywords

Comments

This is the regular (simple) continued fraction for (2+sqrt(5))/2 = A176055. - Antonia Redondo Buitrago, Jul 30 2009

Programs

Formula

a(n) = -3*(-1)^n+5. - Paolo P. Lava, Oct 20 2006
G.f.: 2(1+4x)/((1-x)(1+x)). a(n) = 2*A010685(n). - R. J. Mathar, Oct 20 2008
a(n) = (A010674(n)+1)*2. - Martin Ettl, Nov 09 2012

A140253 a(2*n) = 2*(2*4^(n-1)-1) and a(2*n-1) = 2*4^(n-1)-1.

Original entry on oeis.org

-1, 1, 2, 7, 14, 31, 62, 127, 254, 511, 1022, 2047, 4094, 8191, 16382, 32767, 65534, 131071, 262142, 524287, 1048574, 2097151, 4194302, 8388607, 16777214, 33554431, 67108862, 134217727, 268435454, 536870911
Offset: 0

Views

Author

Paul Curtz, Jun 23 2008

Keywords

Comments

The inverse binomial transform is 1, 1, 4, -2, 10, -14, 34, -62 which leads to (-1)^(n+1)*A135440(n).
For n > 0: A266161(a(n)) = n and A266161(m) < n for m < a(n). - Reinhard Zumkeller, Dec 22 2015
Also, the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 673", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 23 2017

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a140253 n = a140253_list !! n
    a140253_list = -1 : concat
                        (transpose [a083420_list, map (* 2) a083420_list])
    -- Reinhard Zumkeller, Dec 22 2015
  • Maple
    A140253:=proc(n): if type(n, odd) then 2*4^(((n+1)/2)-1)-1 else 2*(2*4^((n/2)-1)-1) fi: end: seq(A140253(n),n=0..29); # Johannes W. Meijer, Jun 24 2011
  • Mathematica
    Table[(2^(n+1) - 3 + (-1)^(n+1))/2, {n, 0, 30}] (* Jean-François Alcover, Jun 05 2017 *)

Formula

a(2*n) = 2*A083420(n-1) and a(2*n+1) = A083420(n)
a(n+1) - a(n) = A014551(n); Jacobsthal-Lucas numbers.
a(2*n) + a(2*n+1) = 9*A002450(n)
a(n+1) - 2*a(n) = A010674(n+1); repeat 3, 0.
a(n) + A000034(n+1) = A000079(n); powers of 2.
a(n)= a(n-1) + 2*a(n-2) + 3. - Gary Detlefs, Jun 22 2010
a(n+1) = A000069(2^n); odious numbers. - Johannes W. Meijer, Jun 24 2011
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2, a(0) = -1, a(1) = 1, a(2) = 2. - Philippe Deléham, Feb 25 2012
G.f.: (x^2+3*x-1)/((1-2*x)*(1-x)*(1+x)). - Philippe Deléham, Feb 25 2012

Extensions

Edited, corrected and information added by Johannes W. Meijer, Jun 24 2011

A010680 Decimal expansion of 1/11.

Original entry on oeis.org

0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9
Offset: 0

Views

Author

Keywords

Comments

Period 2: repeat [0,9].

Examples

			1/11 = 0.0909090909090909090909090909090909090909090909090909090909...
		

Crossrefs

Bisections give: A000004, A010734.

Programs

Formula

a(n) = (9/2)*(1 - (-1)^n) = 9*(n mod 2). - Paolo P. Lava, Oct 31 2006
From Elmo R. Oliveira, Jan 15 2024: (Start)
a(n) = a(n-2) for n >= 2.
a(n) = 3 * A010674(n).
G.f.: 9*x/(1-x^2).
E.g.f.: 9*sinh(x). (End)
a(n) = 9 * A000035(n). - Alois P. Heinz, Jan 16 2024

A168233 a(n) = 3*n - a(n-1) - 1 for n>0, a(1)=1.

Original entry on oeis.org

1, 4, 4, 7, 7, 10, 10, 13, 13, 16, 16, 19, 19, 22, 22, 25, 25, 28, 28, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43, 46, 46, 49, 49, 52, 52, 55, 55, 58, 58, 61, 61, 64, 64, 67, 67, 70, 70, 73, 73, 76, 76, 79, 79, 82, 82, 85, 85, 88, 88, 91, 91, 94, 94, 97, 97, 100, 100, 103, 103, 106
Offset: 1

Views

Author

Vincenzo Librandi, Nov 21 2009

Keywords

Crossrefs

Programs

  • Magma
    [(6*n + 3*(-1)^n + 1)/4: n in [1..70]]; // Vincenzo Librandi, Feb 02 2013
  • Maple
    a:=n->3*floor(n/2)+1; seq(a(k), k = 1..70); # Wesley Ivan Hurt, Feb 01 2013
  • Mathematica
    CoefficientList[Series[(1 + 3*x - x^2)/((1+x) * (1-x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Feb 02 2013 *)
    LinearRecurrence[{1,1,-1},{1,4,4},80] (* Harvey P. Dale, Oct 13 2015 *)

Formula

From Bruno Berselli, Nov 15 2010: (Start)
a(n) = (6*n + 3*(-1)^n + 1)/4.
G.f.: x*(1 + 3*x - x^2)/((1+x)*(1-x)^2).
a(n) = a(n-1) + a(n-2) - a(n-3), for n>3.
a(n) + a(n-1) = A016789(n-1) for n>1.
a(n) - a(n-1-2*k) = A010674(n-1) + A008585(k) for n>2*k+1 and k in A001477.
a(n) - a(n-2*k) = A008585(k) for n>2*k and k in A001477. (End)
a(n+1) = A016777(floor((n+1)/2)). - R. J. Mathar, Jan 03 2011
E.g.f.: (1/4)*(3 - 4*exp(x) + (1 + 6*x)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 16 2016

A274912 Square array read by antidiagonals upwards in which each new term is the least nonnegative integer distinct from its neighbors.

Original entry on oeis.org

0, 1, 2, 0, 3, 0, 1, 2, 1, 2, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2016

Keywords

Comments

In the square array we have that:
Antidiagonal sums give A168237.
Odd-indexed rows give A010673.
Even-indexed rows give A010684.
Odd-indexed columns give A000035.
Even-indexed columns give A010693.
Odd-indexed antidiagonals give the initial terms of A010674.
Even-indexed antidiagonals give the initial terms of A000034.
Main diagonal gives A010674.
This is also a triangle read by rows in which each new term is the least nonnegative integer distinct from its neighbors.
In the triangle we have that:
Row sums give A168237.
Odd-indexed columns give A000035.
Even-indexed columns give A010693.
Odd-indexed diagonals give A010673.
Even-indexed diagonals give A010684.
Odd-indexed rows give the initial terms of A010674.
Even-indexed rows give the initial terms of A000034.
Odd-indexed antidiagonals give the initial terms of A010673.
Even-indexed antidiagonals give the initial terms of A010684.

Examples

			The corner of the square array begins:
0, 2, 0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, ...
0, 2, 0, 2, ...
1, 3, 1, ...
0, 2, ...
1, ...
...
The sequence written as a triangle begins:
0;
1, 2;
0, 3, 0;
1, 2, 1, 2;
0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2, 1, 2;
...
		

Crossrefs

Programs

  • Maple
    ListTools:-Flatten([seq([[0,3]$i,0,[1,2]$(i+1)],i=0..10)]); # Robert Israel, Nov 14 2016
  • Mathematica
    Table[Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Nov 14 2016 *)

Formula

a(n) = A274913(n) - 1.
From Robert Israel, Nov 14 2016: (Start)
G.f.: 3*x/(1-x^2) - Sum_{k>=0} (2*x^(2*k^2+3*k+1)-x^(2*k^2+5*k+3))/(1+x).
G.f. as triangle: x*(1+2*y+3*x*y)/((1-x^2*y^2)*(1-x^2)). (End)

A177499 Period 4: repeat [1, 16, 4, 16].

Original entry on oeis.org

1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16
Offset: 0

Views

Author

Paul Curtz, May 10 2010

Keywords

Comments

From Klaus Brockhaus, May 14 2010: (Start)
Interleaving of A000012, A010855, A010709 and A010855.
Continued fraction expansion of (44+sqrt(2442))/88. (End)

Crossrefs

Programs

Formula

From Klaus Brockhaus, May 14 2010: (Start)
a(n+2) - a(n) = A010674(n).
a(n) = a(n-4) for n > 3.
G.f.: (1+16*x+4*x^2+16*x^3)/(1-x^4). (End)
a(n) = A176895(n)^2. - Paul Curtz, Mar 21 2011
a(n) = (37 - 6*cos(n*Pi/2) - 27*cos(n*Pi) - 27*I*sin(n*Pi))/4. - Wesley Ivan Hurt, Jul 09 2016
Showing 1-10 of 13 results. Next