Original entry on oeis.org
0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0
Offset: 0
A047208
Numbers that are congruent to {0, 4} mod 5.
Original entry on oeis.org
0, 4, 5, 9, 10, 14, 15, 19, 20, 24, 25, 29, 30, 34, 35, 39, 40, 44, 45, 49, 50, 54, 55, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 114, 115, 119, 120, 124, 125, 129, 130, 134, 135, 139, 140, 144, 145, 149
Offset: 1
-
[(5*(n-1) + 3*((n-1) mod 2))/2: n in [1..100]]; // G. C. Greubel, Nov 23 2021
-
{#,#+4}&/@(5*Range[0,30])//Flatten (* Harvey P. Dale, Apr 05 2019 *)
-
forstep(n=0,200,[4,1],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
-
[(5*(n-1) +3*((n-1)%2))/2 for n in (1..100)] # G. C. Greubel, Nov 23 2021
A350814
Numbers m such that the largest digit in the decimal expansion of 1/m is 3.
Original entry on oeis.org
3, 30, 33, 75, 300, 303, 330, 333, 429, 750, 813, 3000, 3003, 3030, 3125, 3300, 3330, 3333, 4290, 4329, 7500, 7575, 8130, 30000, 30003, 30030, 30300, 30303, 31250, 33000, 33300, 33330, 33333, 42900, 43290, 46875, 75000, 75075, 75750, 76923, 81103, 81300, 300000
Offset: 1
As 1/33 = 0.0303030303..., 33 is a term.
As 1/75 = 0.0133333333..., 75 is a term.
As 1/429 = 0.002331002331002331..., 429 is a term.
-
Select[Range[10^5], Max[RealDigits[1/#][[1]]] == 3 &] (* Amiram Eldar, Jan 30 2022 *)
-
from fractions import Fraction
from itertools import count, islice
from sympy import n_order, multiplicity
def repeating_decimals_expr(f, digits_only=False):
""" returns repeating decimals of Fraction f as the string aaa.bbb[ccc].
returns only digits if digits_only=True.
"""
a, b = f.as_integer_ratio()
m2, m5 = multiplicity(2,b), multiplicity(5,b)
r = max(m2,m5)
k, m = 10**r, 10**n_order(10,b//2**m2//5**m5)-1
c = k*a//b
s = str(c).zfill(r)
if digits_only:
return s+str(m*k*a//b-c*m)
else:
w = len(s)-r
return s[:w]+'.'+s[w:]+'['+str(m*k*a//b-c*m)+']'
def A350814_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda m:max(repeating_decimals_expr(Fraction(1,m),digits_only=True)) == '3',count(max(startvalue,1)))
A350814_list = list(islice(A350814_gen(),10)) # Chai Wah Wu, Feb 07 2022
A010695
Period 2: repeat (2,5).
Original entry on oeis.org
2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5
Offset: 0
-
&cat [[2,5]^^50]; // Bruno Berselli, Dec 29 2015
-
PadRight[{}, 100, {2, 5}] (* Paolo Xausa, Jan 16 2025 *)
-
makelist(if evenp(n) then 2 else 5, n, 0, 80); /* Martin Ettl, Nov 09 2012 */
A010698
Period 2: repeat (2,8).
Original entry on oeis.org
2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2
Offset: 0
-
A010698:=n->5-3*(-1)^n; seq(A010698(n), n=0..100); # Wesley Ivan Hurt, Mar 26 2014
-
Table[5-3(-1)^n, {n, 0, 100}] (* Wesley Ivan Hurt, Mar 26 2014 *)
PadRight[{},120,{2,8}] (* Harvey P. Dale, Oct 31 2016 *)
-
A010698(n):=if evenp(n) then 2 else 8$
makelist(A010698(n),n,0,30); /* Martin Ettl, Nov 09 2012 */
-
a(n)=n%2*6+2 \\ Charles R Greathouse IV, Jun 11 2015
A140253
a(2*n) = 2*(2*4^(n-1)-1) and a(2*n-1) = 2*4^(n-1)-1.
Original entry on oeis.org
-1, 1, 2, 7, 14, 31, 62, 127, 254, 511, 1022, 2047, 4094, 8191, 16382, 32767, 65534, 131071, 262142, 524287, 1048574, 2097151, 4194302, 8388607, 16777214, 33554431, 67108862, 134217727, 268435454, 536870911
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Wolfram Research, Wolfram Atlas of Simple Programs
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (2, 1, -2).
-
import Data.List (transpose)
a140253 n = a140253_list !! n
a140253_list = -1 : concat
(transpose [a083420_list, map (* 2) a083420_list])
-- Reinhard Zumkeller, Dec 22 2015
-
A140253:=proc(n): if type(n, odd) then 2*4^(((n+1)/2)-1)-1 else 2*(2*4^((n/2)-1)-1) fi: end: seq(A140253(n),n=0..29); # Johannes W. Meijer, Jun 24 2011
-
Table[(2^(n+1) - 3 + (-1)^(n+1))/2, {n, 0, 30}] (* Jean-François Alcover, Jun 05 2017 *)
A010680
Decimal expansion of 1/11.
Original entry on oeis.org
0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9
Offset: 0
1/11 = 0.0909090909090909090909090909090909090909090909090909090909...
A168233
a(n) = 3*n - a(n-1) - 1 for n>0, a(1)=1.
Original entry on oeis.org
1, 4, 4, 7, 7, 10, 10, 13, 13, 16, 16, 19, 19, 22, 22, 25, 25, 28, 28, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43, 46, 46, 49, 49, 52, 52, 55, 55, 58, 58, 61, 61, 64, 64, 67, 67, 70, 70, 73, 73, 76, 76, 79, 79, 82, 82, 85, 85, 88, 88, 91, 91, 94, 94, 97, 97, 100, 100, 103, 103, 106
Offset: 1
-
[(6*n + 3*(-1)^n + 1)/4: n in [1..70]]; // Vincenzo Librandi, Feb 02 2013
-
a:=n->3*floor(n/2)+1; seq(a(k), k = 1..70); # Wesley Ivan Hurt, Feb 01 2013
-
CoefficientList[Series[(1 + 3*x - x^2)/((1+x) * (1-x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Feb 02 2013 *)
LinearRecurrence[{1,1,-1},{1,4,4},80] (* Harvey P. Dale, Oct 13 2015 *)
A274912
Square array read by antidiagonals upwards in which each new term is the least nonnegative integer distinct from its neighbors.
Original entry on oeis.org
0, 1, 2, 0, 3, 0, 1, 2, 1, 2, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0
The corner of the square array begins:
0, 2, 0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, ...
0, 2, 0, 2, ...
1, 3, 1, ...
0, 2, ...
1, ...
...
The sequence written as a triangle begins:
0;
1, 2;
0, 3, 0;
1, 2, 1, 2;
0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2, 1, 2;
...
-
ListTools:-Flatten([seq([[0,3]$i,0,[1,2]$(i+1)],i=0..10)]); # Robert Israel, Nov 14 2016
-
Table[Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Nov 14 2016 *)
A177499
Period 4: repeat [1, 16, 4, 16].
Original entry on oeis.org
1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16
Offset: 0
-
&cat[[1, 16, 4, 16]^^26]; // Klaus Brockhaus, May 14 2010
-
seq(op([1, 16, 4, 16]), n=0..50); # Wesley Ivan Hurt, Jul 09 2016
-
Table[{1, 16, 4, 16}, {21}] // Flatten (* Jean-François Alcover, May 24 2013 *)
Showing 1-10 of 13 results.
Comments