cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A021015 Duplicate of A010680.

Original entry on oeis.org

0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0
Offset: 0

Views

Author

Keywords

A010674 Period 2: repeat (0,3).

Original entry on oeis.org

0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0
Offset: 0

Views

Author

Keywords

Comments

Also decimal expansion of 1/33 = .030303030...

Crossrefs

Cf. A010680 (1/11), A010695 (2^(1 - (-1)^n) + 1).

Programs

Formula

a(n) = (3/2)*(1 - (-1)^n) = 3*(n mod 2). - Paolo P. Lava, Oct 20 2006
a(n) = A010698(n)/2 - 1. - Martin Ettl, Nov 11 2012
a(n) = 2^(1 - (-1)^n) - 1. - Bruno Berselli, Dec 29 2015
From Chai Wah Wu, Jun 04 2016: (Start)
a(n) = a(n-2) for n >= 2.
G.f.: 3*x/(1 - x^2). (End)
E.g.f.: 3*sinh(x). - Ilya Gutkovskiy, Jun 04 2016

Extensions

More terms from Paolo P. Lava, Oct 20 2006

A020014 Nearest integer to Gamma(n + 1/11)/Gamma(1/11).

Original entry on oeis.org

1, 0, 0, 0, 1, 3, 13, 81, 577, 4665, 42405, 427909, 4745900, 57382240, 751185683, 10584889175, 159735600270, 2570291022522, 43928610203109, 794708493674422, 15171707606511701, 304813398276280545, 6428791672736098775
Offset: 0

Views

Author

Keywords

Examples

			Gamma(n + 1/11)/Gamma(1/11) = 1, 1/11, 12/121, 276/1331, 9384/14641, 422280/161051, 23647680/1771561, ... - _R. J. Mathar_, Sep 04 2016
		

Crossrefs

Cf. A020059, A020104, A010680 (decimal expansion of 1/11), A256192 (decimal expansion of Gamma(1/11)).

Programs

  • Magma
    [Round(Gamma(n +1/11)/Gamma(1/11)): n in [0..30]]; // G. C. Greubel, Jan 19 2018
  • Maple
    f := proc(n) round(simplify(GAMMA(n+1/11)/GAMMA(1/11))); end:
    map(f, [$0..60]); # Edited by Robert Israel, Mar 25 2018
  • Mathematica
    Table[Round[Gamma[n + 1/11]/Gamma[1/11]], {n, 0,50}] (* G. C. Greubel, Jan 19 2018 *)
  • PARI
    for(n=0,30, print1(round(gamma(n+1/11)/gamma(1/11)), ", ")) \\ G. C. Greubel, Jan 19 2018
    

A021105 Decimal expansion of 1/101.

Original entry on oeis.org

0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9, 9, 0, 0, 9
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Wesley Ivan Hurt, Jun 04 2016: (Start)
G.f.: 9*x^2/(1-x)*(1+x^2).
a(n) = a(n-1) - a(n-2) + a(n-3) for n>2.
a(n) = 9*(1+(-1)^((2*n+3+(-1)^n)/4))/2 = 9*A133872(n+2).
a(n) = 9*(1+i)*(1-i-i^(-n)+i^(1+n))/4 where i=sqrt(-1).
a(2k) = A010680(k), a(2k+1) = A010680(k+1). (End)
E.g.f.: 9*(-sin(x) - cos(x) + sinh(x) + cosh(x))/2. - Ilya Gutkovskiy, Jun 04 2016

A021917 Decimal expansion of 1/913.

Original entry on oeis.org

0, 0, 1, 0, 9, 5, 2, 9, 0, 2, 5, 1, 9, 1, 6, 7, 5, 7, 9, 4, 0, 8, 5, 4, 3, 2, 6, 3, 9, 6, 4, 9, 5, 0, 7, 1, 1, 9, 3, 8, 6, 6, 3, 7, 4, 5, 8, 9, 2, 6, 6, 1, 5, 5, 5, 3, 1, 2, 1, 5, 7, 7, 2, 1, 7, 9, 6, 2, 7, 6, 0, 1, 3, 1, 4, 3, 4, 8, 3, 0, 2, 3, 0, 0, 1, 0, 9, 5, 2, 9, 0, 2, 5, 1, 9, 1, 6, 7, 5
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    Join[{0,0},RealDigits[1/913,10,120][[1]]] (* Harvey P. Dale, Jan 16 2012 *)

Formula

Equals A010680 * A021087. - R. J. Mathar, Feb 12 2025
Showing 1-5 of 5 results.