A168430 a(n) = 4^n mod 13.
1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, -1, 1).
Programs
-
Magma
[Modexp(4, n, 13): n in [0..100]]; // Vincenzo Librandi, Jul 23 2016
-
Magma
&cat[[1,4, 3,12,9,10]^^20]; // Vincenzo Librandi, Jul 23 2016
-
Mathematica
PowerMod[4,Range[0,100],13] (* or *) PadRight[{},100,{1,4,3,12,9,10}] (* Harvey P. Dale, Mar 15 2015 *)
-
PARI
a(n)=lift(Mod(4,13)^n) \\ Charles R Greathouse IV, Mar 22 2016
-
Sage
[power_mod(4, n, 13)for n in range(0, 90)]
Formula
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4).
G.f.: (1 + 3*x - x^2 + 10*x^3)/ ((1-x) * (1+x) * (x^2-x+1)). (End)
From Wesley Ivan Hurt, Sep 08 2022: (Start)
a(n) = (39-13*(-1)^n-20*cos(n*Pi/3)-12*sqrt(3)*sin(n*Pi/3))/6.
a(n) = a(n-6) for n >= 6. (End)