cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168430 a(n) = 4^n mod 13.

Original entry on oeis.org

1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10
Offset: 0

Views

Author

Zerinvary Lajos, Nov 25 2009

Keywords

Programs

  • Magma
    [Modexp(4, n, 13): n in [0..100]]; // Vincenzo Librandi, Jul 23 2016
    
  • Magma
    &cat[[1,4, 3,12,9,10]^^20]; // Vincenzo Librandi, Jul 23 2016
  • Mathematica
    PowerMod[4,Range[0,100],13] (* or *) PadRight[{},100,{1,4,3,12,9,10}] (* Harvey P. Dale, Mar 15 2015 *)
  • PARI
    a(n)=lift(Mod(4,13)^n) \\ Charles R Greathouse IV, Mar 22 2016
    
  • Sage
    [power_mod(4, n, 13)for n in range(0, 90)]
    

Formula

From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4).
G.f.: (1 + 3*x - x^2 + 10*x^3)/ ((1-x) * (1+x) * (x^2-x+1)). (End)
From Wesley Ivan Hurt, Sep 08 2022: (Start)
a(n) = (39-13*(-1)^n-20*cos(n*Pi/3)-12*sqrt(3)*sin(n*Pi/3))/6.
a(n) = a(n-6) for n >= 6. (End)