cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168460 a(n) = 6 + 10*floor((n-1)/2).

Original entry on oeis.org

6, 6, 16, 16, 26, 26, 36, 36, 46, 46, 56, 56, 66, 66, 76, 76, 86, 86, 96, 96, 106, 106, 116, 116, 126, 126, 136, 136, 146, 146, 156, 156, 166, 166, 176, 176, 186, 186, 196, 196, 206, 206, 216, 216, 226, 226, 236, 236, 246, 246, 256, 256, 266, 266, 276, 276, 286
Offset: 1

Views

Author

Vincenzo Librandi, Nov 26 2009

Keywords

Crossrefs

Programs

  • Magma
    [6+10*Floor((n-1)/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013
  • Maple
    A168460:=n->6 + 10*floor((n-1)/2): seq(A168460(n), n=1..100); # Wesley Ivan Hurt, Jul 24 2016
  • Mathematica
    RecurrenceTable[{a[1]==6,a[n]==10n-a[n-1]-8},a,{n,80}] (* or *) LinearRecurrence[{1,1,-1},{6,6,16},80] (* Harvey P. Dale, Apr 25 2011 *)
    Table[6 + 10 Floor[(n - 1)/2], {n, 70}] (* or *) CoefficientList[Series[2 (3 + 2 x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)

Formula

a(n) = 10*n - a(n-1) - 8, with n>1, a(1)=6.
From R. J. Mathar, Jan 04 2011: (Start)
a(n) = 2*A168283(n).
a(n+1) = A017341(floor(n/2)).
G.f.: 2*x*(3 + 2*x^2) / ( (1+x)*(x-1)^2 ). (End)
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. - Vincenzo Librandi, Sep 19 2013
From G. C. Greubel, Jul 23 2016: (Start)
a(n) = (10*n - 5*(-1)^n - 3)/2.
E.g.f.: (1/2)*(-5 + 8*exp(x) + (10*x - 3)*exp(2*x))*exp(-x). (End)
a(n) = a(n-2) + 10 for n>2. - Wesley Ivan Hurt, Jul 24 2016

Extensions

New definition by Vincenzo Librandi, Sep 19 2013