cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A168524 Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -2, b = 2, c = 1.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 39, 39, 1, 1, 120, 350, 120, 1, 1, 341, 2266, 2266, 341, 1, 1, 950, 12895, 28340, 12895, 950, 1, 1, 2659, 69201, 290891, 290891, 69201, 2659, 1, 1, 7540, 360772, 2661644, 4987254, 2661644, 360772, 7540, 1, 1, 21681, 1851948, 22618188, 72033750, 72033750, 22618188, 1851948, 21681, 1
Offset: 0

Views

Author

Roger L. Bagula, Nov 28 2009

Keywords

Examples

			Triangle of coefficients begins as:
  1;
  1,     1;
  1,    10,       1;
  1,    39,      39,        1;
  1,   120,     350,      120,        1;
  1,   341,    2266,     2266,      341,        1;
  1,   950,   12895,    28340,    12895,      950,        1;
  1,  2659,   69201,   290891,   290891,    69201,     2659,       1;
  1,  7540,  360772,  2661644,  4987254,  2661644,   360772,    7540,     1;
  1, 21681, 1851948, 22618188, 72033750, 72033750, 22618188, 1851948, 21681, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x,0,30}], x];
    Table[T[n, -2, 2, 1], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
  • Sage
    m=12
    def LerchPhi(x,s,a): return sum( x^j/(j+a)^s for j in (0..3*m) )
    def p(n,x,a,b,c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
    def T(n,k,a,b,c): return ( p(n,x,a,b,c) ).series(x, n+1).list()[k]
    flatten([[T(n,k,-2,2,1) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022

Formula

From G. C. Greubel, Mar 19 2022: (Start)
G.f.: a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -2, b = 2, c = 1.
T(n, n-k) = T(n, k). (End)

Extensions

Edited by G. C. Greubel, Mar 19 2022

A168525 Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = 65/2, b = -162/2, c = 135/2.

Original entry on oeis.org

19, 19, 19, 19, 146, 19, 19, 759, 759, 19, 19, 3154, 10374, 3154, 19, 19, 11543, 89398, 89398, 11543, 19, 19, 39210, 615669, 1394444, 615669, 39210, 19, 19, 127303, 3747297, 16267301, 16267301, 3747297, 127303, 19, 19, 401858, 21201472, 160611806, 302914330, 160611806, 21201472, 401858, 19
Offset: 0

Views

Author

Roger L. Bagula, Nov 28 2009

Keywords

Examples

			Triangle begins as:
  19;
  19,     19;
  19,    146,       19;
  19,    759,      759,        19;
  19,   3154,    10374,      3154,        19;
  19,  11543,    89398,     89398,     11543,        19;
  19,  39210,   615669,   1394444,    615669,     39210,       19;
  19, 127303,  3747297,  16267301,  16267301,   3747297,   127303,     19;
  19, 401858, 21201472, 160611806, 302914330, 160611806, 21201472, 401858, 19;
		

Crossrefs

Programs

  • Mathematica
    T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x,0,30}], x];
    Table[T[n, 65/2, -162/2, 135/2], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
  • Sage
    m=12
    def LerchPhi(x,s,a): return sum( x^j/(j+a)^s for j in (0..3*m) )
    def p(n,x,a,b,c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
    def T(n,k,a,b,c): return ( p(n,x,a,b,c) ).series(x, n+1).list()[k]
    flatten([[T(n,k,65/2, -162/2, 135/2) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022

Formula

From G. C. Greubel, Mar 19 2022: (Start)
G.f.: a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = 65/2, b = -162/2, c = 135/2.
T(n, n-k) = T(n, k). (End)

Extensions

Edited by G. C. Greubel, Mar 19 2022
Showing 1-2 of 2 results.