cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168582 a(n) = (4*n^3 - 6*n^2 + 8*n + 9 + 3*(-1)^n)/12.

Original entry on oeis.org

1, 1, 3, 7, 17, 33, 59, 95, 145, 209, 291, 391, 513, 657, 827, 1023, 1249, 1505, 1795, 2119, 2481, 2881, 3323, 3807, 4337, 4913, 5539, 6215, 6945, 7729, 8571, 9471, 10433, 11457, 12547, 13703, 14929, 16225, 17595, 19039, 20561
Offset: 0

Views

Author

Paul Curtz, Nov 30 2009

Keywords

Comments

Starting with a(2), the sum of the first and last term in row n-1 of the Janet table A172002.

Crossrefs

Cf. A137928 (first differences).

Programs

  • Magma
    [2*n/3 +3/4 -n^2/2 +n^3/3 +(-1)^n/4: n in [0..40]]; // Vincenzo Librandi, Aug 06 2011
    
  • Mathematica
    Table[(4*n^3 - 6*n^2 + 8*n + 9 + 3*(-1)^n)/12, {n,0,50}] (* G. C. Greubel, Jul 26 2016 *)
  • PARI
    a(n)=(4*n^3-6*n^2+8*n+9+3*(-1)^n)/12 \\ Charles R Greathouse IV, Jul 26 2016

Formula

a(n+2) = A168388(n) + A168380(n), n >= 0.
a(2n) = A168547(n);
a(2n+1) = A168574(n).
G.f.: (1 - 2*x + x^4 + 2*x^2 + 2*x^3)/((1+x)*(x-1)^4). - R. J. Mathar, Jun 27 2011
E.g.f.: (1/12)*((4*x^3 + 6*x^2 + 6*x + 9)*exp(x) + 3*exp(-x)). - G. C. Greubel, Jul 26 2016