cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A168547 a(n) = 1 - 2*n^2 + 4*n*(1 + 2*n^2)/3.

Original entry on oeis.org

1, 3, 17, 59, 145, 291, 513, 827, 1249, 1795, 2481, 3323, 4337, 5539, 6945, 8571, 10433, 12547, 14929, 17595, 20561, 23843, 27457, 31419, 35745, 40451, 45553, 51067, 57009, 63395, 70241, 77563, 85377, 93699, 102545, 111931, 121873, 132387, 143489, 155195
Offset: 0

Views

Author

Paul Curtz, Nov 29 2009

Keywords

Comments

Binomial transform of the quasi-finite sequence 1,2,12,16,0,... (0 continued).
A bisection of A168582.

Programs

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (1 - x + 11*x^2 + 5*x^3)/(x-1)^4.
First differences: a(n+1) - a(n) = 2*A054569(n+1).
Second differences: a(n+2) - 2*a(n+1) + a(n) = 4*A004767(n).
Third differences: a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n) = 16.
a(n+1) = A166464(n) + A035597(n+1).
a(n) = 1 - 2*n^2 + 4*A005900(n). - R. J. Mathar, Dec 05 2009
E.g.f.: (1/3)*(3 + 6*x + 18*x^2 + 8*x^3)*exp(x). - G. C. Greubel, Jul 26 2016

Extensions

Edited and extended by R. J. Mathar, Dec 05 2009

A168574 a(n) = (4*n + 3)*(1 + 2*n^2)/3.

Original entry on oeis.org

1, 7, 33, 95, 209, 391, 657, 1023, 1505, 2119, 2881, 3807, 4913, 6215, 7729, 9471, 11457, 13703, 16225, 19039, 22161, 25607, 29393, 33535, 38049, 42951, 48257, 53983, 60145, 66759, 73841, 81407, 89473, 98055, 107169, 116831, 127057, 137863, 149265, 161279
Offset: 0

Views

Author

Paul Curtz, Nov 30 2009

Keywords

Comments

Binomial transform of quasi-finite sequence 1, 6, 20, 16, 0, 0, ... (0 continued).
a(n+1) is the sum of the first and last number at the bottom (2nd row) of each block in A172002, 3+4, 13+20, 39+56, ...

Crossrefs

Programs

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 16.
a(n) = A168582(2*n+1) .
a(n+1) = A166911(n) + A002492(n+1).
G.f.: (1 + 3*x + 11*x^2 + x^3)/(1 - x)^4.
E.g.f.: (1/3)*(3 + 18*x + 30*x^2 + 8*x^3)*exp(x). - G. C. Greubel, Jul 26 2016

Extensions

Edited and extended by R. J. Mathar, Mar 25 2010
Showing 1-2 of 2 results.