A168574 a(n) = (4*n + 3)*(1 + 2*n^2)/3.
1, 7, 33, 95, 209, 391, 657, 1023, 1505, 2119, 2881, 3807, 4913, 6215, 7729, 9471, 11457, 13703, 16225, 19039, 22161, 25607, 29393, 33535, 38049, 42951, 48257, 53983, 60145, 66759, 73841, 81407, 89473, 98055, 107169, 116831, 127057, 137863, 149265, 161279
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(4*n+3)*(1+2*n^2)/3 : n in [0..40]]; // Vincenzo Librandi, Aug 06 2011
-
Mathematica
Table[ (4*n+3)*(1+2*n^2)/3 , {n,0,25}] (* G. C. Greubel, Jul 26 2016 *) LinearRecurrence[{4,-6,4,-1},{1,7,33,95},40] (* Harvey P. Dale, May 16 2019 *)
-
PARI
a(n)=(4*n+3)*(1+2*n^2)/3 \\ Charles R Greathouse IV, Jul 26 2016
Formula
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 16.
a(n) = A168582(2*n+1) .
G.f.: (1 + 3*x + 11*x^2 + x^3)/(1 - x)^4.
E.g.f.: (1/3)*(3 + 18*x + 30*x^2 + 8*x^3)*exp(x). - G. C. Greubel, Jul 26 2016
Extensions
Edited and extended by R. J. Mathar, Mar 25 2010
Comments