A168597 Squares of the central trinomial coefficients (A002426).
1, 1, 9, 49, 361, 2601, 19881, 154449, 1225449, 9853321, 80156209, 658076409, 5444816521, 45343869481, 379735715529, 3195538786449, 27004932177129, 229066136374761, 1949470542590481, 16640188083903609, 142415188146838161, 1221800234100831441, 10504959504381567729
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a := n -> (-1)^n*hypergeom([1/2,-n],[1],4)*hypergeom([1/2-n/2,-n/2],[1], 4): seq(simplify(a(n)),n=0..20); # Peter Luschny, Nov 10 2014
-
Mathematica
Table[(-1)^n*Hypergeometric2F1[1/2, -n, 1, 4] * Hypergeometric2F1[(1 - n)/2, -n/2, 1, 4], {n, 0, 50}] (* G. C. Greubel, Feb 26 2017 *) CoefficientList[Series[(2 EllipticK[(16 x)/(1 + 3 x)^2])/(Pi (1 + 3 x)), {x, 0, 28}], x, 26] (* After Mark van Hoeij, Peter Luschny, May 13 2025 *)
-
PARI
{a(n)=polcoeff((1+x+x^2 +x*O(x^n))^n,n)^2} for(n=0, 20, print1(a(n), ", "))
-
PARI
/* Using AGM: */ {a(n)=polcoeff( 1 / agm(1+3*x, sqrt((1+3*x)^2 - 16*x +x*O(x^n))), n)} for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 04 2014
Formula
a(n) = A002426(n)^2.
G.f.: hypergeom([1/12, 5/12],[1],1728*x^4*(x-1)*(9*x-1)*(3*x+1)^2/(81*x^4-36*x^3-26*x^2-4*x+1)^3)/(81*x^4-36*x^3-26*x^2-4*x+1)^(1/4). - Mark van Hoeij, May 07 2013
G.f.: 1 / AGM(1+3*x, sqrt((1-x)*(1-9*x))), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean. - Paul D. Hanna, Sep 04 2014
G.f.: 1 / AGM((1-x)*(1-3*x), (1+x)*(1+3*x)) = Sum_{n>=0} a(n)*x^(2*n). - Paul D. Hanna, Oct 04 2014
a(n) = (-1)^n*hypergeom([1/2,-n],[1],4)*hypergeom([(1-n)/2,-n/2],[1],4). - Peter Luschny, Nov 10 2014
a(n) ~ 3^(2*n+1) / (4*Pi*n). - Vaclav Kotesovec, Sep 28 2019
From Peter Bala, Feb 08 2022: (Start)
a(n) = Sum_{k = 0..n} (-3)^(n-k)*binomial(2*k,k)*binomial(n,k)* binomial(n+k,k).
n^2*(2*n-3)*a(n)= (7*n^2-14*n+6)*(2*n-1)*a(n-1) + 3*(7*n^2-14*n+6)*(2*n-3)*a(n-2) - 27*(2*n-1)*(n-2)^2*a(n-3) with a(0) = 1, a(1) = 1 and a(2) = 9.
G.f.: A(x) = Sum_{n >= 0} binomial(2*n,n)^2*x^n/(1 + 3*x)^(2*n+1).
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all prime p and positive integers n and k.
Conjecture: The stronger congruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 5 and positive integers n and k. (End)
G.f.: hypergeom([1/2, 1/2],[1],16*x/(1+3*x)^2)/(1+3*x). - Mark van Hoeij, May 13 2025
Comments