A168604 a(n) = 2^(n-2) - 1.
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
Offset: 3
Examples
The partitions of {1,1,1,2,3} into exactly two nonempty parts are {{1},{1,1,2,3}}, {{2},{1,1,1,3}}, {{3},{1,1,1,2}}, {{1,1},{1,2,3}}, {{1,2},{1,1,3}}, {{1,3},{1,1,2}} and {{2,3},{1,1,1}}.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- M. Griffiths, I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
[2^(n-2)-1 : n in [3..35]]; // Vincenzo Librandi, May 13 2011
-
Mathematica
f4[n_] := 2^(n - 2) - 1; Table[f4[n], {n, 3, 30}] LinearRecurrence[{3,-2},{1,3},40] (* Harvey P. Dale, Oct 20 2013 *)
-
PARI
a(n)=2^(n-2)-1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
E.g.f.: 2*exp(2*x)-exp(x).
a(n) = A000225(n-2).
G.f.: x^3/((1-x)*(1-2*x))
a(n) = A126646(n-3). - R. J. Mathar, Dec 11 2009
a(n) = 3*a(n-1) - 2*a(n-2). - Arkadiusz Wesolowski, Jun 14 2013
a(n) = A000918(n-2) + 1. - Miquel Cerda, Aug 09 2016
Comments