cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168604 a(n) = 2^(n-2) - 1.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
Offset: 3

Views

Author

Martin Griffiths, Dec 01 2009

Keywords

Comments

Number of ways of partitioning the multiset {1,1,1,2,3,...,n-2} into exactly two nonempty parts.
An elephant sequence, see A175655. For the central square six A[5] vectors, with decimal values between 26 and 176, lead to this sequence. For the corner squares these vectors lead to the companion sequence A000325 (without the first leading 1). - Johannes W. Meijer, Aug 15 2010

Examples

			The partitions of {1,1,1,2,3} into exactly two nonempty parts are {{1},{1,1,2,3}}, {{2},{1,1,1,3}}, {{3},{1,1,1,2}}, {{1,1},{1,2,3}}, {{1,2},{1,1,3}}, {{1,3},{1,1,2}} and {{2,3},{1,1,1}}.
		

Crossrefs

The number of ways of partitioning the multiset {1, 1, 1, 2, 3, ..., n-1} into exactly three and four nonempty parts are given in A168605 and A168606, respectively.

Programs

Formula

E.g.f.: 2*exp(2*x)-exp(x).
a(n) = A000225(n-2).
G.f.: x^3/((1-x)*(1-2*x))
a(n) = A126646(n-3). - R. J. Mathar, Dec 11 2009
a(n) = 3*a(n-1) - 2*a(n-2). - Arkadiusz Wesolowski, Jun 14 2013
a(n) = A000918(n-2) + 1. - Miquel Cerda, Aug 09 2016