A168622 Triangle read by rows: T(n, k) = [x^k]( 7*(1+x)^n - 6*(1+x^n) ) with T(0, 0) = 1.
1, 1, 1, 1, 14, 1, 1, 21, 21, 1, 1, 28, 42, 28, 1, 1, 35, 70, 70, 35, 1, 1, 42, 105, 140, 105, 42, 1, 1, 49, 147, 245, 245, 147, 49, 1, 1, 56, 196, 392, 490, 392, 196, 56, 1, 1, 63, 252, 588, 882, 882, 588, 252, 63, 1, 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 14, 1; 1, 21, 21, 1; 1, 28, 42, 28, 1; 1, 35, 70, 70, 35, 1; 1, 42, 105, 140, 105, 42, 1; 1, 49, 147, 245, 245, 147, 49, 1; 1, 56, 196, 392, 490, 392, 196, 56, 1; 1, 63, 252, 588, 882, 882, 588, 252, 63, 1; 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
A168622:= func< n,k | k eq 0 or k eq n select 1 else 7*Binomial(n,k) >; [A168622(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2025
-
Mathematica
(* First program *) p[x_, n_]:= With[{m=3}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]]; Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten (* Second program *) A168622[n_, k_]:= If[k==0 || k==n, 1, 7*Binomial[n,k]]; Table[A168622[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2025 *)
-
SageMath
def A168622(n,k): if k==0 or k==n: return 1 else: return 7*binomial(n,k) print(flatten([[A168622(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 10 2025
Formula
From G. C. Greubel, Apr 10 2025: (Start)
T(n, k) = 7*binomial(n, k), with T(n, 0) = T(n, n) = 1.
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = 2*A048489(n-1) + 6*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = -6*(1 + (-1)^n) + 13*[n=0].
Sum_{k=0..floor(n/2)} T(n-k, k) = A022090(n+1) - 3*(3 + (-1)^n) + 6*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (14/sqrt(3))*(-1)^n*cos((4*n+1)*Pi/6) - 6*(1 + (-1)^n*cos(n*Pi/2)) + 6*[n=0]. (End)
Comments