cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168637 a(n) = a(n-1) + a(n-2) - a(n-4) starting a(0)=0, a(1)=1, a(2)=a(3)=3.

Original entry on oeis.org

0, 1, 3, 3, 6, 8, 11, 16, 21, 29, 39, 52, 70, 93, 124, 165, 219, 291, 386, 512, 679, 900, 1193, 1581, 2095, 2776, 3678, 4873, 6456, 8553, 11331, 15011, 19886, 26344, 34899, 46232, 61245, 81133, 107479, 142380, 188614, 249861, 330996, 438477, 580859, 769475
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

References

  • R. Pallu de la Barriere, Optimal Control Theory, Dover Publications, New York, 1967, pages 339-344

Crossrefs

Cf. A007307 (for a different starting vector of the Mma program).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60);
    [0] cat Coefficients(R!( x*(1+2*x-x^2)/((1-x)*(1-x^2-x^3)) )); // G. C. Greubel, Apr 20 2025
    
  • Mathematica
    LinearRecurrence[{1,1,0,-1},{0,1,3,3},50] (* or *) CoefficientList[ Series[ x*(-1-2x+x^2)/((1-x)(x^3+x^2-1)),{x,0,50}],x] (* Harvey P. Dale, Jun 22 2011 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,1,1]^n*[0;1;3;3])[1,1] \\ Charles R Greathouse IV, Jul 29 2016
    
  • SageMath
    def A168637_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+2*x-x^2)/((1-x)*(1-x^2-x^3)) ).list()
    print(A168637_list(60)) # G. C. Greubel, Apr 20 2025

Formula

Limit_{n -> oo} a(n+1)/a(n) = A060006 (also a limiting value of A000931).
G.f.: x*(1 + 2*x - x^2)/((1-x)*(1 - x^2 - x^3)). [Dec 03 2009]
a(n) = 3*A000931(n+4) + 2*A000931(n+3) - 2. [Dec 03 2009]
a(n) = a(n-2) + a(n-3) + 2. - Greg Dresden, May 18 2020

Extensions

Precise definition and more formulas supplied by the Assoc. Editors of the OEIS, Dec 03 2009