cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168655 Number of compositions such that the number of parts is divisible by the first part.

Original entry on oeis.org

1, 1, 3, 5, 11, 22, 44, 88, 177, 355, 710, 1419, 2838, 5679, 11363, 22727, 45443, 90862, 181703, 363419, 726903, 1453875, 2907667, 5814880, 11628864, 23256828, 46513965, 93031069, 186068503, 372142797, 744280096, 1488527555, 2976987042, 5953897971, 11907811651
Offset: 1

Views

Author

Vladeta Jovovic, Dec 01 2009

Keywords

Crossrefs

Cf. A079501.

Programs

  • Maple
    b:= proc(n,t,g) option remember; `if`(n=0,
          `if`(irem(t, g)=0, 1, 0), add(b(n-i, t+1,
          `if`(g=0,i,g)), i=1..n))
        end:
    a:= n-> b(n,0,0):
    seq(a(n), n=1..40); # Alois P. Heinz, Dec 15 2009
  • Mathematica
    A101510[n_] := Sum[If[Mod[i+1, k+1] == 0, Binomial[n-k, i], 0], {k, 0, n/2}, {i, 0, n-k}]; A168655 =  Join[{1}, Table[A101510[n], {n, 0, 32}] // Differences] (* Jean-François Alcover, Jan 24 2014 *)

Formula

G.f.: (1-x)*Sum(x^(2*n-1)/((1-x)^n-x^n),n=1..infinity), First differences of A101510.
a(n) ~ log(2) * 2^(n-1). - Vaclav Kotesovec, May 01 2014

Extensions

More terms from Alois P. Heinz, Dec 15 2009