A168655 Number of compositions such that the number of parts is divisible by the first part.
1, 1, 3, 5, 11, 22, 44, 88, 177, 355, 710, 1419, 2838, 5679, 11363, 22727, 45443, 90862, 181703, 363419, 726903, 1453875, 2907667, 5814880, 11628864, 23256828, 46513965, 93031069, 186068503, 372142797, 744280096, 1488527555, 2976987042, 5953897971, 11907811651
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..250
Crossrefs
Cf. A079501.
Programs
-
Maple
b:= proc(n,t,g) option remember; `if`(n=0, `if`(irem(t, g)=0, 1, 0), add(b(n-i, t+1, `if`(g=0,i,g)), i=1..n)) end: a:= n-> b(n,0,0): seq(a(n), n=1..40); # Alois P. Heinz, Dec 15 2009
-
Mathematica
A101510[n_] := Sum[If[Mod[i+1, k+1] == 0, Binomial[n-k, i], 0], {k, 0, n/2}, {i, 0, n-k}]; A168655 = Join[{1}, Table[A101510[n], {n, 0, 32}] // Differences] (* Jean-François Alcover, Jan 24 2014 *)
Formula
G.f.: (1-x)*Sum(x^(2*n-1)/((1-x)^n-x^n),n=1..infinity), First differences of A101510.
a(n) ~ log(2) * 2^(n-1). - Vaclav Kotesovec, May 01 2014
Extensions
More terms from Alois P. Heinz, Dec 15 2009