cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168683 Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.

Original entry on oeis.org

1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093750, 183105468750, 915527343735, 4577636718600, 22888183592640, 114440917961400, 572204589798000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003948, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 915527343735, A003948(17) = 915527343750. - Klaus Brockhaus, Mar 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003948 (G.f.: (1+x)/(1-5*x)).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (1+t)*(1-t^17)/(1 -5*t +14*t^17 -10*t^18) )); // G. C. Greubel, Feb 22 2021
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^17)/(1 -5*t +14*t^17 -10*t^18), {t, 0, 40}], t] (* G. C. Greubel, Aug 03 2016, Feb 22 2021 *)
    coxG[{17,10,-4,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 09 2017 *)
  • Sage
    def A168683_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^17)/(1 -5*t +14*t^17 -10*t^18) ).list()
    A168683_list(40) # G. C. Greubel, Feb 22 2021

Formula

G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1) / (10*t^17 - 4*t^16 - 4*t^15 - 4*t^14 - 4*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).
G.f.: (1+t)*(1-t^17)/(1 -5*t +14*t^17 -10*t^18). - G. C. Greubel, Feb 22 2021