A168686 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599936, 316659348799488, 2533274790395868, 20266198323166656, 162129586585330980
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,-28).
Crossrefs
Cf. A003951 (g.f.: (1+x)/(1-8*x)).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+t)*(1-t^17)/(1 -8*t +35*t^17 -28*t^18) )); // G. C. Greubel, Mar 24 2021 -
Mathematica
CoefficientList[Series[(1+t)*(1-t^17)/(1 -8*t +35*t^17 -28*t^18), {t, 0, 40}], t] (* G. C. Greubel, Aug 03 2016; Mar 24 2021 *) coxG[{17, 28, -7, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Mar 24 2021 *)
-
Sage
def A168686_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+t)*(1-t^17)/(1 -8*t +35*t^17 -28*t^18) ).list() A168686_list(40) # G. C. Greubel, Mar 24 2021
Formula
G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (28*t^17 - 7*t^16 - 7*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
G.f.: (1+t)*(1-t^17)/(1 - 8*t + 35*t^17 - 28*t^18). - G. C. Greubel, Mar 24 2021
Comments