A168742 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.
1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014444032, 1168231104512, 18691697672192, 299067162755072, 4785074604081152, 76561193665298432, 1224979098644774912, 19599665578316398592
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, -120).
Crossrefs
Cf. A170736 (G.f.: (1+x)/(1-16*x)).
Programs
-
Mathematica
CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^18 - 15*t^17 - 15*t^16 - 15*t^15 - 15*t^14 - 15*t^13 - 15*t^12 - 15*t^11 - 15*t^10 - 15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 10 2016 *) coxG[{18,120,-15}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 26 2017 *)
Formula
G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^18 - 15*t^17 - 15*t^16 - 15*t^15 - 15*t^14 - 15*t^13 - 15*t^12 - 15*t^11 - 15*t^10 - 15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1).
Comments