A169623 Generalized Pascal triangle read by rows: T(n,0) = T(0,n) = 1 for n >= 0, T(n,k) = 0 for k < 0 or k > n; otherwise T(n,k) = T(n-2,k-2) + T(n-2,k-1) + T(n-2,k) for 1 <= k <= n-1.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 10, 16, 19, 16, 10, 4, 1, 1, 5, 14, 26, 35, 35, 26, 14, 5, 1, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1, 1, 6, 20, 45, 75, 96, 96, 75, 45, 20, 6, 1
Offset: 0
Examples
Triangle begins: 1 1 1 1 1 1 1 2 2 1 1 2 3 2 1 1 3 5 5 3 1 1 3 6 7 6 3 1 1 4 9 13 13 9 4 1 1 4 10 16 19 16 10 4 1 ... As a square array read by antidiagonals: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, ... 1, 2, 3, 5, 6, 9, 10, 14, 15, 20, 21, 27, ... 1, 2, 5, 7, 13, 16, 26, 30, 45, ... 1, 3, 6, 13, 19, 35, 45, 75, ... 1, 3, 9, 16, 35, 51, 96, ... ... From _Peter Bala_, Aug 19 2021: (Start) With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins /1 \/1 \/1 \ /1 \ /1 \ |1 1 ||0 1 ||0 1 ||0 1 | |1 1 | |1 0 1 ||0 1 1 ||0 0 1 ||0 0 1 |... = |1 1 1 | |1 0 1 1 ||0 1 0 1 ||0 0 1 1 ||0 0 0 1 | |1 2 2 1 | |1 0 1 0 1||0 1 0 1 1||0 0 1 0 1||0 0 0 1 1| |1 2 3 2 1 | |... ||... |... ||... | |... | (End)
Links
- Rémy Sigrist, Rows 0..199, flattened
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Richard Ehrenborg and Margaret A. Readdy, The Gaussian coefficient revisited, arXiv:1609.03216 [math.CO], 2016.
- Richard L. Ollerton and Anthony G. Shannon, Some properties of generalized Pascal squares and triangles, Fib. Q., 36 (No. 2, 1998), 98-109. See Table 10.
- Wikipedia, Hockey-stick identity.
Crossrefs
Programs
-
Maple
T:=proc(n,k) option remember; if n >= 0 and k = 0 then 1 elif n >= 0 and k = n then 1 elif (k < 0 or k > n) then 0 else T(n-2,k-2)+T(n-2,k-1)+T(n-2,k); fi; end; for n from 0 to 14 do lprint([seq(T(n,k),k=0..n)]); od: # N. J. A. Sloane, Nov 23 2017
-
Mathematica
p[x, 1] := 1; p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + x + 1)^Floor[n/2]] a = Table[CoefficientList[p[x, n], x], {n, 1, 12}] Flatten[a] (* This is for the same sequence but with offset 1 *)
Formula
From Peter Bala, Aug 19 2021: (Start)
T(2*n,k) = T(2*n-1,k-1) + T(2*n-2,k).
T(2*n,k) = T(2*n-1,k) + T(2*n-2,k-2).
T(2*n+1,k) = T(2*n,k) + T(2*n,k-1).
Hockey stick identities (relate row k entries to entries in row k-1):
T(2*n,k) = T(2*n-1,k-1) + T(2*n-3,k-1) + T(2*n-5,k-1) + ....
T(2*n+1,k) = T(2*n,k-1) + ( T(2*n-1,k-1) + T(2*n-3,k-1) + T(2*n-5,k-1) + ... ). (End)
Extensions
Keyword:tabl added, notation standardized, formula added by the Assoc. Editors of the OEIS, Feb 02 2010
Entry revised by N. J. A. Sloane, Nov 23 2017
Comments