A169726 a(n) = 3*2^n*(2^n-1) + 1.
1, 7, 37, 169, 721, 2977, 12097, 48769, 195841, 784897, 3142657, 12576769, 50319361, 201302017, 805257217, 3221127169, 12884705281, 51539214337, 206157643777, 824632147969, 3298531737601, 13194133241857, 52776545550337, 211106207367169, 844424879800321
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Alice V. Kleeva, Grid for this sequence
- Alice V. Kleeva, Illustration of initial terms
- Robert Munafo, Sequence A169720, and two others by Alice V. Kleeva
- Robert Munafo, Sequence A169720, and two others by Alice V. Kleeva [Cached copy, in pdf format, included with permission]
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8). - _R. J. Mathar_, Apr 26 2010
Programs
-
Magma
I:=[1, 7, 37]; [n le 3 select I[n] else 7*Self(n-1) -14*Self(n-2) +8*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 04 2012
-
Magma
[3*2^n*(2^n-1)+1 : n in [0..30]]; // Wesley Ivan Hurt, Sep 14 2014
-
Maple
A169726:=n->3*2^n*(2^n-1)+1: seq(A169726(n), n=0..30); # Wesley Ivan Hurt, Sep 14 2014
-
Mathematica
CoefficientList[Series[(-1 - 2*x^2)/((x-1)*(2*x-1)*(4*x-1)), {x, 0, 30}],x] (* Vincenzo Librandi, Dec 04 2012 *) Table[c=2^n;3c(c-1)+1,{n,0,30}] (* or *) LinearRecurrence[{7,-14,8},{1,7,37},30] (* Harvey P. Dale, Nov 22 2013 *)
Formula
From R. J. Mathar, Apr 26 2010: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3).
G.f.: ( -1-2*x^2 ) / ( (x-1)*(2*x-1)*(4*x-1) ). (End)
a(n) = (2*A169720(n)+1)/3. - L. Edson Jeffery, Dec 03 2012
Comments