cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A169720 a(n) = (3*2^(n-1)-1)*(3*2^n-1).

Original entry on oeis.org

1, 10, 55, 253, 1081, 4465, 18145, 73153, 293761, 1177345, 4713985, 18865153, 75479041, 301953025, 1207885825, 4831690753, 19327057921, 77308821505, 309236465665, 1236948221953, 4947797606401, 19791199862785, 79164818325505, 316659311050753, 1266637319700481
Offset: 0

Views

Author

Alice V. Kleeva (alice27353(AT)gmail.com), Jan 19 2010

Keywords

Comments

A subsequence of the triangular numbers A000217.

Crossrefs

Programs

  • Magma
    I:=[1, 10, 55]; [n le 3 select I[n] else 7*Self(n-1)-14*Self(n-2)+8*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 03 2012
  • Mathematica
    CoefficientList[Series[(1 + 3*x - x^2)/((1-x)*(1-2*x)*(1-4*x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{7, -14, 8}, {1, 10, 55}, 30] (* Vincenzo Librandi, Dec 03 2012 *)
  • PARI
    a(n)=polcoeff((1+3*x-x^2)/((1-x)*(1-2*x)*(1-4*x)+x*O(x^n)),n) \\ Paul D. Hanna, Apr 29 2010
    

Formula

G.f.: (1 + 3*x - x^2)/((1-x)*(1-2*x)*(1-4*x)). - Paul D. Hanna, Apr 29 2010
a(n) = A000217(A033484(n)). - Mitch Harris, Dec 02 2012
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3). - Vincenzo Librandi, Dec 03 2012
a(n) = (3*A169726(n)-1)/2. - L. Edson Jeffery, Dec 03 2012
a(n) = A006095(n+2) +3*A006095(n+1) - A006905(n). - R. J. Mathar, Dec 04 2016

A169727 a(n) = 3*(2^(n+1)-2)*(2^(n+1)-1) + 1.

Original entry on oeis.org

1, 19, 127, 631, 2791, 11719, 48007, 194311, 781831, 3136519, 12564487, 50294791, 201252871, 805158919, 3220930567, 12884312071, 51538427911, 206156070919, 824629002247, 3298525446151, 13194120658951, 52776520384519, 211106157035527, 844424779137031
Offset: 0

Views

Author

Alice V. Kleeva (alice27353(AT)gmail.com), Jan 19 2010

Keywords

Comments

A subsequence of the centered hexagonal numbers A003215.

Crossrefs

Programs

  • Magma
    I:=[1, 19, 127]; [n le 3 select I[n] else 7*Self(n-1) -14*Self(n-2) +8*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 03 2012
  • Mathematica
    CoefficientList[Series[-(1 + 12*x + 8*x^2)/((x-1)*(2*x-1)*(4*x-1)), {x, 0, 30}], x](* Vincenzo Librandi, Dec 03 2012 *)
    LinearRecurrence[{7,-14,8},{1,19,127},30] (* Harvey P. Dale, Jan 15 2015 *)

Formula

From R. J. Mathar, Apr 26 2010: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3).
G.f.: -(1+12*x+8*x^2) / ( (x-1)*(2*x-1)*(4*x-1) ). (End)

Extensions

G.f. adapted to the offset by Vincenzo Librandi, Dec 03 2012
Showing 1-2 of 2 results.