cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169986 Ceiling(phi^n) where phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 18, 30, 47, 77, 123, 200, 322, 522, 843, 1365, 2207, 3572, 5778, 9350, 15127, 24477, 39603, 64080, 103682, 167762, 271443, 439205, 710647, 1149852, 1860498, 3010350, 4870847, 7881197, 12752043, 20633240, 33385282
Offset: 0

Views

Author

N. J. A. Sloane, Sep 26 2010

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [3*Fibonacci(n-1) + Fibonacci(n-2)+ n mod 2: n in [1..40]]; // Vincenzo Librandi, Apr 16 2015
    
  • Mathematica
    Ceiling[GoldenRatio^Range[0,40]] (* or *) Join[{1},LinearRecurrence[{1,2,-1,-1},{2,3,5,7},40]] (* Harvey P. Dale, Nov 12 2014 *)
  • PARI
    a(n)=if(n, 3*fibonacci(n-1) + fibonacci(n-2) + n%2, 1) \\ Charles R Greathouse IV, Apr 16 2015
  • Sage
    [ceil(golden_ratio^n) for n in range(37)] # Danny Rorabaugh, Apr 16 2015
    

Formula

For n >= 5, a(n) = a(n-1) + 2a(n-2) - a(n-3) - a(n-4). - Charles R Greathouse IV, Oct 14 2010
a(n) = 3*Fibonacci(n-1) + Fibonacci(n-2) + (n mod 2), n>0. - Gary Detlefs, Dec 29 2010
G.f.: (-x+x^2+x^3+x^4-1) / ((1-x)*(1+x)*(x^2+x-1)). - R. J. Mathar, Jan 06 2011
a(2k) = A000032(2k) = A169985(2k) and a(2k+1) = A000032(2k+1)+1 = A169985(2k+1)+1, for k>0. - Danny Rorabaugh, Apr 15 2015