A170727 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.
1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136718750, 70484801856152343750, 3171816083526855468750, 142731723758708496093750
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, -990).
Programs
-
Mathematica
With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-44 t^Range[49]] + 990t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Vincenzo Librandi, Dec 08 2012 *) coxG[{50,990,-44}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 14 2022 *)
Formula
G.f.: (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(990*t^50 - 44*t^49 - 44*t^48 - 44*t^47 - 44*t^46 - 44*t^45 -
44*t^44 - 44*t^43 - 44*t^42 - 44*t^41 - 44*t^40 - 44*t^39 - 44*t^38 -
44*t^37 - 44*t^36 - 44*t^35 - 44*t^34 - 44*t^33 - 44*t^32 - 44*t^31 -
44*t^30 - 44*t^29 - 44*t^28 - 44*t^27 - 44*t^26 - 44*t^25 - 44*t^24 -
44*t^23 - 44*t^22 - 44*t^21 - 44*t^20 - 44*t^19 - 44*t^18 - 44*t^17 -
44*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 -
44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 -
44*t + 1).
From Zak Seidov, Dec 04 2009: (Start)
G.f.: (t^50+2f+1)/(990*t^50-44f+1) with f=t*(1+t+t^2+t^3+t^4+t^5+t^6)*(1+t^7+t^14+t^21+t^28+t^35+t^42).
G.f.: (1 + t - t^50 - t^51)/(1 - 45*t + 1034*t^50 - 990*t^51).
(End)
Comments