A170735 Expansion of g.f.: (1+x)/(1-15*x).
1, 16, 240, 3600, 54000, 810000, 12150000, 182250000, 2733750000, 41006250000, 615093750000, 9226406250000, 138396093750000, 2075941406250000, 31139121093750000, 467086816406250000, 7006302246093750000, 105094533691406250000, 1576418005371093750000, 23646270080566406250000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..800
- Index entries for linear recurrences with constant coefficients, signature (15).
Programs
-
GAP
Concatenation([1], List([1..20], n-> 16*15^(n-1) )); # G. C. Greubel, Sep 23 2019
-
Magma
[1] cat[16*15^(n-1): n in [1..20]]; // Vincenzo Librandi, Dec 10 2012
-
Maple
seq(`if`(n=0, 1, 16*15^(n-1)), n=0..20); # G. C. Greubel, Sep 23 2019
-
Mathematica
Join[{1},16*15^Range[0,25]] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *) CoefficientList[Series[(1+x)/(1-15x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2012 *) Join[{1},NestList[15#&,16,20]] (* Harvey P. Dale, Sep 25 2015 *)
-
PARI
vector(20, n, if(n==1, 1, 16*15^(n-2))) \\ G. C. Greubel, Sep 23 2019
-
Sage
[1]+[16*15^(n-1) for n in (1..20)] # G. C. Greubel, Sep 23 2019
Formula
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*16^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 16*15^(n-1). - Vincenzo Librandi, Dec 05 2009
a(0)=1, a(1)=16, a(n) = 15*a(n-1). - Vincenzo Librandi, Dec 10 2012
E.g.f.: (16*exp(15*x) - 1)/15. - G. C. Greubel, Sep 23 2019