A170801 a(n) = n^10*(n^9 + 1)/2.
0, 1, 262656, 581160258, 137439477760, 9536748046875, 304679900238336, 5699447733924196, 72057594574798848, 675425860579888245, 5000000005000000000, 30579545237175985446, 159739999716270145536
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (20, -190, 1140, -4845, 15504, -38760, 77520, -125970, 167960, -184756, 167960, -125970, 77520, -38760, 15504, -4845, 1140, -190, 20, -1).
Crossrefs
Programs
-
GAP
List([0..30], n -> n^10*(n^9+1)/2); # G. C. Greubel, Nov 15 2018
-
Magma
[n^10*(n^9+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
-
Maple
seq(n^10*(n^9 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
-
Mathematica
Table[(n^19 + n^10)/2, {n,0,30}] (* Robert A. Russell, Nov 13 2018 *)
-
PARI
vector(30, n, n--; n^10*(n^9+1)/2) \\ G. C. Greubel, Nov 15 2018
-
Sage
[n^10*(n^9+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
Formula
From Robert A. Russell, Nov 13 2018: (Start)
G.f.: (Sum_{j=1..19} S2(19,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..10} S2(10,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..18} A145882(19,k) * x^k / (1-x)^20.
E.g.f.: (Sum_{k=1..19} S2(19,k)*x^k + Sum_{k=1..10} S2(10,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>19, a(n) = Sum_{j=1..20} -binomial(j-21,j) * a(n-j). (End)
Comments