cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170801 a(n) = n^10*(n^9 + 1)/2.

Original entry on oeis.org

0, 1, 262656, 581160258, 137439477760, 9536748046875, 304679900238336, 5699447733924196, 72057594574798848, 675425860579888245, 5000000005000000000, 30579545237175985446, 159739999716270145536
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

Number of unoriented rows of length 19 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=262656, there are 2^19=524288 oriented arrangements of two colors. Of these, 2^10=1024 are achiral. That leaves (524288-1024)/2=261632 chiral pairs. Adding achiral and chiral, we get 262656. - Robert A. Russell, Nov 13 2018

Crossrefs

Row 19 of A277504.
Cf. A010807 (oriented), A008454 (achiral).
Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), this sequence (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..30], n -> n^10*(n^9+1)/2); # G. C. Greubel, Nov 15 2018
  • Magma
    [n^10*(n^9+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^9 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    Table[(n^19 + n^10)/2, {n,0,30}] (* Robert A. Russell, Nov 13 2018 *)
  • PARI
    vector(30, n, n--; n^10*(n^9+1)/2) \\ G. C. Greubel, Nov 15 2018
    
  • Sage
    [n^10*(n^9+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
    

Formula

From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010807(n) + A008454(n)) / 2 = (n^19 + n^10) / 2.
G.f.: (Sum_{j=1..19} S2(19,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..10} S2(10,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..18} A145882(19,k) * x^k / (1-x)^20.
E.g.f.: (Sum_{k=1..19} S2(19,k)*x^k + Sum_{k=1..10} S2(10,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>19, a(n) = Sum_{j=1..20} -binomial(j-21,j) * a(n-j). (End)