cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A277504 Array read by descending antidiagonals: T(n,k) is the number of unoriented strings with n beads of k or fewer colors.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 6, 1, 0, 1, 5, 10, 18, 10, 1, 0, 1, 6, 15, 40, 45, 20, 1, 0, 1, 7, 21, 75, 136, 135, 36, 1, 0, 1, 8, 28, 126, 325, 544, 378, 72, 1, 0, 1, 9, 36, 196, 666, 1625, 2080, 1134, 136, 1, 0, 1, 10, 45, 288, 1225, 3996, 7875, 8320, 3321, 272, 1, 0
Offset: 0

Views

Author

Jean-François Alcover, Oct 18 2016

Keywords

Comments

From Petros Hadjicostas, Jul 07 2018: (Start)
Column k of this array is the "BIK" (reversible, indistinct, unlabeled) transform of k,0,0,0,....
Consider the input sequence (c_k(n): n >= 1) with g.f. C_k(x) = Sum_{n>=1} c_k(n)*x^n. Let a_k(n) = BIK(c_k(n): n >= 1) be the output sequence under Bower's BIK transform. It can proved that the g.f. of BIK(c_k(n): n >= 1) is A_k(x) = (1/2)*(C_k(x)/(1-C_k(x)) + (C_k(x^2) + C_k(x))/(1-C_k(x^2))). (See the comments for sequence A001224.)
For column k of this two-dimensional array, the input sequence is defined by c_k(1) = k and c_k(n) = 0 for n >= 1. Thus, C_k(x) = k*x, and hence the g.f. of column k is (1/2)*(C_k(x)/(1-C_k(x)) + (C_k(x^2) + C_k(x))/(1-C_k(x^2))) = (1/2)*(k*x/(1-k*x) + (k*x^2 + k*x)/(1-k*x^2)) = (2 + (1-k)*x - 2*k*x^2)*k*x/(2*(1-k*x^2)*(1-k*x)).
Using the first form the g.f. above and the expansion 1/(1-y) = 1 + y + y^2 + ..., we can easily prove J.-F. Alcover's formula T(n,k) = (k^n + k^((n + mod(n,2))/2))/2.
(End)

Examples

			Array begins with T(0,0):
1 1   1     1      1       1        1         1         1          1 ...
0 1   2     3      4       5        6         7         8          9 ...
0 1   3     6     10      15       21        28        36         45 ...
0 1   6    18     40      75      126       196       288        405 ...
0 1  10    45    136     325      666      1225      2080       3321 ...
0 1  20   135    544    1625     3996      8575     16640      29889 ...
0 1  36   378   2080    7875    23436     58996    131328     266085 ...
0 1  72  1134   8320   39375   140616    412972   1050624    2394765 ...
0 1 136  3321  32896  195625   840456   2883601   8390656   21526641 ...
0 1 272  9963 131584  978125  5042736  20185207  67125248  193739769 ...
0 1 528 29646 524800 4884375 30236976 141246028 536887296 1743421725 ...
...
		

References

Crossrefs

Columns 0-6 are A000007, A000012, A005418(n+1), A032120, A032121, A032122, A056308.
Rows 0-20 are A000012, A001477, A000217 (triangular numbers), A002411 (pentagonal pyramidal numbers), A037270, A168178, A071232, A168194, A071231, A168372, A071236, A168627, A071235, A168663, A168664, A170779, A170780, A170790, A170791, A170801, A170802.
Main diagonal is A275549.
Transpose is A284979.
Cf. A003992 (oriented), A293500 (chiral), A321391 (achiral).

Programs

  • Magma
    [[n le 0 select 1 else ((n-k)^k + (n-k)^Ceiling(k/2))/2: k in [0..n]]: n in [0..15]]; // G. C. Greubel, Nov 15 2018
  • Mathematica
    Table[If[n>0, ((n-k)^k + (n-k)^Ceiling[k/2])/2, 1], {n, 0, 15}, {k, 0, n}] // Flatten (* updated Jul 10 2018 *) (* Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018 *)
  • PARI
    for(n=0,15, for(k=0,n, print1(if(n==0,1, ((n-k)^k + (n-k)^ceil(k/2))/2), ", "))) \\ G. C. Greubel, Nov 15 2018
    
  • PARI
    T(n,k) = {(k^n + k^ceil(n/2)) / 2} \\ Andrew Howroyd, Sep 13 2019
    

Formula

T(n,k) = [n==0] + [n>0] * (k^n + k^ceiling(n/2)) / 2. [Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018]
G.f. for column k: (1 - binomial(k+1,2)*x^2) / ((1-k*x)*(1-k*x^2)). - Petros Hadjicostas, Jul 07 2018 [Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018]
From Robert A. Russell, Nov 13 2018: (Start)
T(n,k) = (A003992(k,n) + A321391(n,k)) / 2.
T(n,k) = A003992(k,n) - A293500(n,k) = A293500(n,k) + A321391(n,k).
G.f. for row n: (Sum_{j=0..n} S2(n,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=0..ceiling(n/2)} S2(ceiling(n/2),j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f. for row n>0: x*Sum_{k=0..n-1} A145882(n,k) * x^k / (1-x)^(n+1).
E.g.f. for row n: (Sum_{k=0..n} S2(n,k)*x^k + Sum_{k=0..ceiling(n/2)} S2(ceiling(n/2),k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
T(0,k) = 1; T(1,k) = k; T(2,k) = binomial(k+1,2); for n>2, T(n,k) = k*(T(n-3,k)+T(n-2,k)-k*T(n-1,k)).
For k>n, T(n,k) = Sum_{j=1..n+1} -binomial(j-n-2,j) * T(n,k-j). (End)

Extensions

Array transposed for greater consistency by Andrew Howroyd, Apr 04 2017
Origin changed to T(0,0) by Robert A. Russell, Nov 13 2018

A170798 a(n) = n^10*(n^6 + 1)/2.

Original entry on oeis.org

0, 1, 33280, 21552885, 2148007936, 76298828125, 1410585186816, 16616606522425, 140738025226240, 926511837818121, 5000005000000000, 22974877900498381, 92442160406200320, 332708373520835845, 1088976813532013056
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

a(n) is number of distinct 4 X 4 matrices with entries in {1,2,...,n} when a matrix and its transpose are considered equivalent. - David Nacin, Feb 20 2017
Cycle index of this S2 group action is (s(2)^6s(1)^4+s(1)^16)/2. - David Nacin, Feb 20 2017

Examples

			a(2) = 33280 is the number of inequivalent 4 X 4 binary matrices up to taking the transpose. - _David Nacin_, Feb 20 2017
		

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), this sequence (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..20], n-> n^10*(n^6 +1)/2); # G. C. Greubel, Oct 11 2019
  • Magma
    [n^10*(n^6+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^6+1)/2, n=0..20); # G. C. Greubel, Oct 12 2019
  • Mathematica
    Table[n^10*(n^6+1)/2,{n,0,30}] (* Harvey P. Dale, Aug 27 2016 *)
  • PARI
    concat(0, Vec(-x*(x +1)*(x^14 +33262*x^13 +20953999*x^12 +1765180292*x^11 +40926077261*x^10 +350131349138*x^9 +1253612167971*x^8 +1937785948152*x^7 +1253612167971*x^6 +350131349138*x^5 +40926077261*x^4 +1765180292*x^3 +20953999*x^2 +33262*x +1) / (x -1)^17 + O(x^30))) \\ Colin Barker, Jul 11 2015
    
  • PARI
    vector(21, m, (m-1)^10*((m-1)^6 + 1)/2) \\ G. C. Greubel, Oct 11 2019
    
  • Sage
    [n^10*(n^6 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
    

Formula

G.f.: x*(x+1)*(x^14 + 33262*x^13 + 20953999*x^12 + 1765180292*x^11 + 40926077261*x^10 + 350131349138*x^9 + 1253612167971*x^8 + 1937785948152*x^7 + 1253612167971*x^6 + 350131349138*x^5 + 40926077261*x^4 + 1765180292*x^3 + 20953999*x^2 + 33262*x + 1)/(1-x)^17. - Colin Barker, Jul 11 2015
E.g.f.: x*(2 + 33278*x + 7151016*x^2 + 171833006*x^3 + 1096233075*x^4 + 2734949385*x^5 + 3281888484*x^6 + 2141764803*x^7 + 820784295*x^8 + 193754991*x^9 + 28936908*x^10 + 2757118*x^11 + 165620*x^12 + 6020*x^13 + 120*x^14 + x^15)*exp(x)/2. - G. C. Greubel, Oct 12 2019

A170802 a(n) = n^10*(n^10 + 1)/2.

Original entry on oeis.org

0, 1, 524800, 1743421725, 549756338176, 47683720703125, 1828079250264576, 39896133290043625, 576460752840294400, 6078832731271856601, 50000000005000000000, 336374997479248716901, 1916879996254696243200
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

By definition, all terms are triangular numbers. - Harvey P. Dale, Aug 12 2012
Number of unoriented rows of length 20 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=524800, there are 2^20=1048576 oriented arrangements of two colors. Of these, 2^10=1024 are achiral. That leaves (1048576-1024)/2=523776 chiral pairs. Adding achiral and chiral, we get 524800. - Robert A. Russell, Nov 13 2018

Crossrefs

Row 20 of A277504.
Cf. A010808 (oriented), A008454 (achiral).
Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170896 (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), this sequence (m=10).

Programs

  • GAP
    List([0..30], n -> n^10*(n^10+1)/2); # G. C. Greubel, Nov 15 2018
    
  • Magma
    [n^10*(n^10+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^10 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    n10[n_]:=Module[{c=n^10},(c(c+1))/2];Array[n10,15,0] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    vector(30, n, n--; n^10*(n^10+1)/2) \\ G. C. Greubel, Nov 15 2018
    
  • Python
    for n in range(0,20): print(int(n**10*(n**10 + 1)/2), end=', ') # Stefano Spezia, Nov 15 2018
  • Sage
    [n^10*(n^10+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
    

Formula

From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010808(n) + A008454(n)) / 2 = (n^20 + n^10) / 2.
G.f.: (Sum_{j=1..20} S2(20,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..10} S2(10,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..19} A145882(20,k) * x^k / (1-x)^21.
E.g.f.: (Sum_{k=1..20} S2(20,k)*x^k + Sum_{k=1..10} S2(10,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>20, a(n) = Sum_{j=1..21} -binomial(j-22,j) * a(n-j). (End)

A170797 a(n) = n^10*(n^5+1)/2.

Original entry on oeis.org

0, 1, 16896, 7203978, 537395200, 15263671875, 235122725376, 2373921992596, 17592722915328, 102947309439525, 500005000000000, 2088637053420126, 7703541745975296, 25593015436291303, 77784192406233600
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), this sequence (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).

Programs

Formula

G.f.: x*(15872*x^13 +6890977*x^12 +423932400*x^11 +7520863426*x^10 +51389080880*x^9 +155692452591*x^8 +223769408736*x^7 +155695145820*x^6 +51387918048*x^5 +7520366095*x^4 +424158512*x^3 +6933762*x^2 +16880*x +1) / (x-1)^16. - Colin Barker, Nov 01 2014
a(n) = 16*a(n-1) - 120*a(n-2) + 560*a(n-3) - 1820*a(n-4) + 4368*a(n-5) - 8008*a(n-6) + 11440*a(n-7) - 12870*a(n-8) + 11440*a(n-9) - 8008*a(n-10) + 4368*a(n-11) - 1820*a(n-12) + 560*a(n-13) - 120*a(n-14) + 16*a(n-15) - a(n-16) for n > 15. - Wesley Ivan Hurt, Aug 10 2016
E.g.f.: x*(2 +16894*x +2384431*x^2 +42390055*x^3 +210809445*x^4 + 420716100*x^5 +408747213*x^6 +216628590*x^7 +67128535*x^8 +12662651*x^9 +1479478*x^10 +106470*x^11 +4550*x^12 +105*x^13 +x^14)*exp(x)/2. - G. C. Greubel, Oct 11 2019

A170799 a(n) = n^10*(n^7 + 1)/2.

Original entry on oeis.org

0, 1, 66048, 64599606, 8590458880, 381474609375, 8463359955456, 116315398231228, 1125900443713536, 8338592593225485, 50000005000000000, 252723527218359186, 1109305584328900608, 4325208028619914891, 15245673509292925440, 49263062956171875000, 147573953139432226816
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), A170798 (m=6), this sequence (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..20], n-> n^10*(n^7 +1)/2); # G. C. Greubel, Oct 11 2019
  • Magma
    [n^10*(n^7+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^7 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    Table[n^10(n^7+1)/2,{n,0,20}] (* Harvey P. Dale, Aug 27 2013 *)
  • PARI
    vector(21, m, (m-1)^10*((m-1)^7 + 1)/2) \\ G. C. Greubel, Oct 11 2019
    
  • Sage
    [n^10*(n^7 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
    

Formula

G.f.: x*(65024*x^15 + 63370125*x^14 + 7437628950*x^13 + 236677103915*x^12 + 2858645957220*x^11 + 15527824213413*x^10 + 41568614867330*x^9 + 57445190329275*x^8 + 41568608318040*x^7 + 15527828734975*x^6 + 2858646015162*x^5 + 236676197145*x^4 + 7437770500*x^3 + 63410895*x^2 + 66030*x + 1)/(x-1)^18. - Colin Barker, Feb 24 2013
E.g.f.: x*(2 + 66046*x + 21467155*x^2 + 694371395*x^3 + 5652794176*x^4 + 17505772725*x^5 + 25708110666*x^6 + 20415995778*x^7 + 9528822348*x^8 + 2758334151*x^9 + 512060978*x^10 + 62022324*x^11 + 4910178*x^12 + 249900*x^13 + 7820*x^14 + 136*x^15 + x^16)*exp(x)/2. - G. C. Greubel, Oct 12 2019

A170800 a(n) = n^10*(n^8 + 1)/2.

Original entry on oeis.org

0, 1, 131584, 193739769, 34360262656, 1907353515625, 50780008567296, 814206940192849, 9007199791611904, 75047319391891761, 500000005000000000, 2779958669714828041, 13311666671401304064, 56227703544907942489
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), this sequence (m=8), A170801 (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..20], n-> n^10*(n^8 +1)/2); # G. C. Greubel, Oct 11 2019
  • Magma
    [n^10*(n^8+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^8 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    Table[n^10 (n^8+1)/2,{n,0,20}] (* Harvey P. Dale, Jul 14 2013 *)
  • PARI
    vector(21, m, (m-1)^10*((m-1)^8 + 1)/2) \\ G. C. Greubel, Oct 11 2019
    
  • Sage
    [n^10*(n^8 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
    

Formula

G.f.: x*(1 + 131565*x + 191239844*x^2 + 30701706940*x^3 + 1287510524640*x^4 + 20228672856392*x^5 + 142998539385460*x^6 + 503354978422188*x^7 + 932692832164970*x^8 + 932692832164970*x^9 + 503354978422188*x^10 + 142998539385460*x^11 + 20228672856392*x^12 + 1287510524640*x^13 + 30701706940*x^14 +191239844*x^15 + 131565*x^16 + x^17)/(1-x)^19. - Harvey P. Dale, Jul 14 2013
E.g.f.: x*(2 + 131582*x + 64448340*x^2 + 2798841090*x^3 + 28958138070*x^4 + 110687273866*x^5 + 197462489280*x^6 + 189036065760*x^7 + 106175395800*x^8 + 37112163804*x^9 + 8391004908*x^10 + 1256328866*x^11 + 125854638*x^12 + 8408778*x^13 + 367200*x^14 + 9996*x^15 + 153*x^16 + x^17)*exp(x)/2. - G. C. Greubel, Oct 12 2019

A170796 a(n) = n^10*(n^4 + 1)/2.

Original entry on oeis.org

0, 1, 8704, 2421009, 134742016, 3056640625, 39212315136, 339252774049, 2199560126464, 11440139619681, 50005000000000, 189887885503921, 641990190956544, 1968757122095569, 5556148040106496, 14596751337890625
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), this sequence (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..20], n-> n^10*(n^4 +1)/2); # G. C. Greubel, Oct 11 2019
  • Magma
    [n^10*(n^4+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
    
  • Maple
    seq(n^10*(n^4 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    Table[n^10*(n^4 +1)/2, {n,0,20}] (* G. C. Greubel, Oct 11 2019 *)
  • PARI
    vector(21, m, (m-1)^10*((m-1)^4 + 1)/2) \\ G. C. Greubel, Oct 11 2019
    
  • Sage
    [n^10*(n^4 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
    

Formula

From G. C. Greubel, Oct 11 2019: (Start)
G.f.: x*(1 +8689*x +2290554*x^2 +99340346*x^3 +1285757375*x^4 +6420936303*x^5 +13986239532*x^6 +13986239532*x^7 +6420936303*x^8 +1285757375*x^9 +99340346*x^10 +2290554*x^11 +8689*x^12 +x^13)/(1-x)^15.
E.g.f.: x*(2 +8702*x +798300*x^2 +10425850*x^3 +40117560*x^4 +63459200*x^5 +49335160*x^6 +20913070*x^7 +5135175*x^8 +752753*x^9 + 66066*x^10 +3367*x^11 +91*x^12 +x^13)*exp(x)/2. (End)
Showing 1-7 of 7 results.