A170798
a(n) = n^10*(n^6 + 1)/2.
Original entry on oeis.org
0, 1, 33280, 21552885, 2148007936, 76298828125, 1410585186816, 16616606522425, 140738025226240, 926511837818121, 5000005000000000, 22974877900498381, 92442160406200320, 332708373520835845, 1088976813532013056
Offset: 0
a(2) = 33280 is the number of inequivalent 4 X 4 binary matrices up to taking the transpose. - _David Nacin_, Feb 20 2017
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
-
List([0..20], n-> n^10*(n^6 +1)/2); # G. C. Greubel, Oct 11 2019
-
[n^10*(n^6+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
-
seq(n^10*(n^6+1)/2, n=0..20); # G. C. Greubel, Oct 12 2019
-
Table[n^10*(n^6+1)/2,{n,0,30}] (* Harvey P. Dale, Aug 27 2016 *)
-
concat(0, Vec(-x*(x +1)*(x^14 +33262*x^13 +20953999*x^12 +1765180292*x^11 +40926077261*x^10 +350131349138*x^9 +1253612167971*x^8 +1937785948152*x^7 +1253612167971*x^6 +350131349138*x^5 +40926077261*x^4 +1765180292*x^3 +20953999*x^2 +33262*x +1) / (x -1)^17 + O(x^30))) \\ Colin Barker, Jul 11 2015
-
vector(21, m, (m-1)^10*((m-1)^6 + 1)/2) \\ G. C. Greubel, Oct 11 2019
-
[n^10*(n^6 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
A170801
a(n) = n^10*(n^9 + 1)/2.
Original entry on oeis.org
0, 1, 262656, 581160258, 137439477760, 9536748046875, 304679900238336, 5699447733924196, 72057594574798848, 675425860579888245, 5000000005000000000, 30579545237175985446, 159739999716270145536
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (20, -190, 1140, -4845, 15504, -38760, 77520, -125970, 167960, -184756, 167960, -125970, 77520, -38760, 15504, -4845, 1140, -190, 20, -1).
-
List([0..30], n -> n^10*(n^9+1)/2); # G. C. Greubel, Nov 15 2018
-
[n^10*(n^9+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
-
seq(n^10*(n^9 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
-
Table[(n^19 + n^10)/2, {n,0,30}] (* Robert A. Russell, Nov 13 2018 *)
-
vector(30, n, n--; n^10*(n^9+1)/2) \\ G. C. Greubel, Nov 15 2018
-
[n^10*(n^9+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
A170802
a(n) = n^10*(n^10 + 1)/2.
Original entry on oeis.org
0, 1, 524800, 1743421725, 549756338176, 47683720703125, 1828079250264576, 39896133290043625, 576460752840294400, 6078832731271856601, 50000000005000000000, 336374997479248716901, 1916879996254696243200
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1).
-
List([0..30], n -> n^10*(n^10+1)/2); # G. C. Greubel, Nov 15 2018
-
[n^10*(n^10+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
-
seq(n^10*(n^10 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
-
n10[n_]:=Module[{c=n^10},(c(c+1))/2];Array[n10,15,0] (* Harvey P. Dale, Jul 17 2012 *)
-
vector(30, n, n--; n^10*(n^10+1)/2) \\ G. C. Greubel, Nov 15 2018
-
for n in range(0,20): print(int(n**10*(n**10 + 1)/2), end=', ') # Stefano Spezia, Nov 15 2018
-
[n^10*(n^10+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
A170797
a(n) = n^10*(n^5+1)/2.
Original entry on oeis.org
0, 1, 16896, 7203978, 537395200, 15263671875, 235122725376, 2373921992596, 17592722915328, 102947309439525, 500005000000000, 2088637053420126, 7703541745975296, 25593015436291303, 77784192406233600
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
-
List([0..20], n-> n^10*(n^5 +1)/2); # G. C. Greubel, Oct 11 2019
-
[n^10*(n^5+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
-
A170797:=n->n^10*(n^5+1)/2: seq(A170797(n), n=0..20); # Wesley Ivan Hurt, Aug 10 2016
-
Table[n^10*(n^5 + 1)/2, {n, 0, 15}] (* Wesley Ivan Hurt, Aug 10 2016 *)
-
vector(21, m, (m-1)^10*((m-1)^5 + 1)/2) \\ G. C. Greubel, Oct 11 2019
-
[n^10*(n^5 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
A170800
a(n) = n^10*(n^8 + 1)/2.
Original entry on oeis.org
0, 1, 131584, 193739769, 34360262656, 1907353515625, 50780008567296, 814206940192849, 9007199791611904, 75047319391891761, 500000005000000000, 2779958669714828041, 13311666671401304064, 56227703544907942489
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (19,-171,969,-3876,11628,-27132,50388,-75582,92378,-92378,75582,-50388,27132,-11628,3876,-969,171,-19,1).
-
List([0..20], n-> n^10*(n^8 +1)/2); # G. C. Greubel, Oct 11 2019
-
[n^10*(n^8+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
-
seq(n^10*(n^8 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
-
Table[n^10 (n^8+1)/2,{n,0,20}] (* Harvey P. Dale, Jul 14 2013 *)
-
vector(21, m, (m-1)^10*((m-1)^8 + 1)/2) \\ G. C. Greubel, Oct 11 2019
-
[n^10*(n^8 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
A170796
a(n) = n^10*(n^4 + 1)/2.
Original entry on oeis.org
0, 1, 8704, 2421009, 134742016, 3056640625, 39212315136, 339252774049, 2199560126464, 11440139619681, 50005000000000, 189887885503921, 641990190956544, 1968757122095569, 5556148040106496, 14596751337890625
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
-
List([0..20], n-> n^10*(n^4 +1)/2); # G. C. Greubel, Oct 11 2019
-
[n^10*(n^4+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
-
seq(n^10*(n^4 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
-
Table[n^10*(n^4 +1)/2, {n,0,20}] (* G. C. Greubel, Oct 11 2019 *)
-
vector(21, m, (m-1)^10*((m-1)^4 + 1)/2) \\ G. C. Greubel, Oct 11 2019
-
[n^10*(n^4 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
Showing 1-6 of 6 results.
Comments