cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A170798 a(n) = n^10*(n^6 + 1)/2.

Original entry on oeis.org

0, 1, 33280, 21552885, 2148007936, 76298828125, 1410585186816, 16616606522425, 140738025226240, 926511837818121, 5000005000000000, 22974877900498381, 92442160406200320, 332708373520835845, 1088976813532013056
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

a(n) is number of distinct 4 X 4 matrices with entries in {1,2,...,n} when a matrix and its transpose are considered equivalent. - David Nacin, Feb 20 2017
Cycle index of this S2 group action is (s(2)^6s(1)^4+s(1)^16)/2. - David Nacin, Feb 20 2017

Examples

			a(2) = 33280 is the number of inequivalent 4 X 4 binary matrices up to taking the transpose. - _David Nacin_, Feb 20 2017
		

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), this sequence (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..20], n-> n^10*(n^6 +1)/2); # G. C. Greubel, Oct 11 2019
  • Magma
    [n^10*(n^6+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^6+1)/2, n=0..20); # G. C. Greubel, Oct 12 2019
  • Mathematica
    Table[n^10*(n^6+1)/2,{n,0,30}] (* Harvey P. Dale, Aug 27 2016 *)
  • PARI
    concat(0, Vec(-x*(x +1)*(x^14 +33262*x^13 +20953999*x^12 +1765180292*x^11 +40926077261*x^10 +350131349138*x^9 +1253612167971*x^8 +1937785948152*x^7 +1253612167971*x^6 +350131349138*x^5 +40926077261*x^4 +1765180292*x^3 +20953999*x^2 +33262*x +1) / (x -1)^17 + O(x^30))) \\ Colin Barker, Jul 11 2015
    
  • PARI
    vector(21, m, (m-1)^10*((m-1)^6 + 1)/2) \\ G. C. Greubel, Oct 11 2019
    
  • Sage
    [n^10*(n^6 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
    

Formula

G.f.: x*(x+1)*(x^14 + 33262*x^13 + 20953999*x^12 + 1765180292*x^11 + 40926077261*x^10 + 350131349138*x^9 + 1253612167971*x^8 + 1937785948152*x^7 + 1253612167971*x^6 + 350131349138*x^5 + 40926077261*x^4 + 1765180292*x^3 + 20953999*x^2 + 33262*x + 1)/(1-x)^17. - Colin Barker, Jul 11 2015
E.g.f.: x*(2 + 33278*x + 7151016*x^2 + 171833006*x^3 + 1096233075*x^4 + 2734949385*x^5 + 3281888484*x^6 + 2141764803*x^7 + 820784295*x^8 + 193754991*x^9 + 28936908*x^10 + 2757118*x^11 + 165620*x^12 + 6020*x^13 + 120*x^14 + x^15)*exp(x)/2. - G. C. Greubel, Oct 12 2019

A170801 a(n) = n^10*(n^9 + 1)/2.

Original entry on oeis.org

0, 1, 262656, 581160258, 137439477760, 9536748046875, 304679900238336, 5699447733924196, 72057594574798848, 675425860579888245, 5000000005000000000, 30579545237175985446, 159739999716270145536
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

Number of unoriented rows of length 19 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=262656, there are 2^19=524288 oriented arrangements of two colors. Of these, 2^10=1024 are achiral. That leaves (524288-1024)/2=261632 chiral pairs. Adding achiral and chiral, we get 262656. - Robert A. Russell, Nov 13 2018

Crossrefs

Row 19 of A277504.
Cf. A010807 (oriented), A008454 (achiral).
Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), this sequence (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..30], n -> n^10*(n^9+1)/2); # G. C. Greubel, Nov 15 2018
  • Magma
    [n^10*(n^9+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^9 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    Table[(n^19 + n^10)/2, {n,0,30}] (* Robert A. Russell, Nov 13 2018 *)
  • PARI
    vector(30, n, n--; n^10*(n^9+1)/2) \\ G. C. Greubel, Nov 15 2018
    
  • Sage
    [n^10*(n^9+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
    

Formula

From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010807(n) + A008454(n)) / 2 = (n^19 + n^10) / 2.
G.f.: (Sum_{j=1..19} S2(19,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..10} S2(10,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..18} A145882(19,k) * x^k / (1-x)^20.
E.g.f.: (Sum_{k=1..19} S2(19,k)*x^k + Sum_{k=1..10} S2(10,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>19, a(n) = Sum_{j=1..20} -binomial(j-21,j) * a(n-j). (End)

A170802 a(n) = n^10*(n^10 + 1)/2.

Original entry on oeis.org

0, 1, 524800, 1743421725, 549756338176, 47683720703125, 1828079250264576, 39896133290043625, 576460752840294400, 6078832731271856601, 50000000005000000000, 336374997479248716901, 1916879996254696243200
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

By definition, all terms are triangular numbers. - Harvey P. Dale, Aug 12 2012
Number of unoriented rows of length 20 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=524800, there are 2^20=1048576 oriented arrangements of two colors. Of these, 2^10=1024 are achiral. That leaves (1048576-1024)/2=523776 chiral pairs. Adding achiral and chiral, we get 524800. - Robert A. Russell, Nov 13 2018

Crossrefs

Row 20 of A277504.
Cf. A010808 (oriented), A008454 (achiral).
Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170896 (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), this sequence (m=10).

Programs

  • GAP
    List([0..30], n -> n^10*(n^10+1)/2); # G. C. Greubel, Nov 15 2018
    
  • Magma
    [n^10*(n^10+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^10 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    n10[n_]:=Module[{c=n^10},(c(c+1))/2];Array[n10,15,0] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    vector(30, n, n--; n^10*(n^10+1)/2) \\ G. C. Greubel, Nov 15 2018
    
  • Python
    for n in range(0,20): print(int(n**10*(n**10 + 1)/2), end=', ') # Stefano Spezia, Nov 15 2018
  • Sage
    [n^10*(n^10+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
    

Formula

From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010808(n) + A008454(n)) / 2 = (n^20 + n^10) / 2.
G.f.: (Sum_{j=1..20} S2(20,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..10} S2(10,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..19} A145882(20,k) * x^k / (1-x)^21.
E.g.f.: (Sum_{k=1..20} S2(20,k)*x^k + Sum_{k=1..10} S2(10,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>20, a(n) = Sum_{j=1..21} -binomial(j-22,j) * a(n-j). (End)

A170797 a(n) = n^10*(n^5+1)/2.

Original entry on oeis.org

0, 1, 16896, 7203978, 537395200, 15263671875, 235122725376, 2373921992596, 17592722915328, 102947309439525, 500005000000000, 2088637053420126, 7703541745975296, 25593015436291303, 77784192406233600
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), this sequence (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).

Programs

Formula

G.f.: x*(15872*x^13 +6890977*x^12 +423932400*x^11 +7520863426*x^10 +51389080880*x^9 +155692452591*x^8 +223769408736*x^7 +155695145820*x^6 +51387918048*x^5 +7520366095*x^4 +424158512*x^3 +6933762*x^2 +16880*x +1) / (x-1)^16. - Colin Barker, Nov 01 2014
a(n) = 16*a(n-1) - 120*a(n-2) + 560*a(n-3) - 1820*a(n-4) + 4368*a(n-5) - 8008*a(n-6) + 11440*a(n-7) - 12870*a(n-8) + 11440*a(n-9) - 8008*a(n-10) + 4368*a(n-11) - 1820*a(n-12) + 560*a(n-13) - 120*a(n-14) + 16*a(n-15) - a(n-16) for n > 15. - Wesley Ivan Hurt, Aug 10 2016
E.g.f.: x*(2 +16894*x +2384431*x^2 +42390055*x^3 +210809445*x^4 + 420716100*x^5 +408747213*x^6 +216628590*x^7 +67128535*x^8 +12662651*x^9 +1479478*x^10 +106470*x^11 +4550*x^12 +105*x^13 +x^14)*exp(x)/2. - G. C. Greubel, Oct 11 2019

A170799 a(n) = n^10*(n^7 + 1)/2.

Original entry on oeis.org

0, 1, 66048, 64599606, 8590458880, 381474609375, 8463359955456, 116315398231228, 1125900443713536, 8338592593225485, 50000005000000000, 252723527218359186, 1109305584328900608, 4325208028619914891, 15245673509292925440, 49263062956171875000, 147573953139432226816
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), A170798 (m=6), this sequence (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..20], n-> n^10*(n^7 +1)/2); # G. C. Greubel, Oct 11 2019
  • Magma
    [n^10*(n^7+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^7 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    Table[n^10(n^7+1)/2,{n,0,20}] (* Harvey P. Dale, Aug 27 2013 *)
  • PARI
    vector(21, m, (m-1)^10*((m-1)^7 + 1)/2) \\ G. C. Greubel, Oct 11 2019
    
  • Sage
    [n^10*(n^7 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
    

Formula

G.f.: x*(65024*x^15 + 63370125*x^14 + 7437628950*x^13 + 236677103915*x^12 + 2858645957220*x^11 + 15527824213413*x^10 + 41568614867330*x^9 + 57445190329275*x^8 + 41568608318040*x^7 + 15527828734975*x^6 + 2858646015162*x^5 + 236676197145*x^4 + 7437770500*x^3 + 63410895*x^2 + 66030*x + 1)/(x-1)^18. - Colin Barker, Feb 24 2013
E.g.f.: x*(2 + 66046*x + 21467155*x^2 + 694371395*x^3 + 5652794176*x^4 + 17505772725*x^5 + 25708110666*x^6 + 20415995778*x^7 + 9528822348*x^8 + 2758334151*x^9 + 512060978*x^10 + 62022324*x^11 + 4910178*x^12 + 249900*x^13 + 7820*x^14 + 136*x^15 + x^16)*exp(x)/2. - G. C. Greubel, Oct 12 2019

A170796 a(n) = n^10*(n^4 + 1)/2.

Original entry on oeis.org

0, 1, 8704, 2421009, 134742016, 3056640625, 39212315136, 339252774049, 2199560126464, 11440139619681, 50005000000000, 189887885503921, 641990190956544, 1968757122095569, 5556148040106496, 14596751337890625
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), this sequence (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..20], n-> n^10*(n^4 +1)/2); # G. C. Greubel, Oct 11 2019
  • Magma
    [n^10*(n^4+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
    
  • Maple
    seq(n^10*(n^4 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    Table[n^10*(n^4 +1)/2, {n,0,20}] (* G. C. Greubel, Oct 11 2019 *)
  • PARI
    vector(21, m, (m-1)^10*((m-1)^4 + 1)/2) \\ G. C. Greubel, Oct 11 2019
    
  • Sage
    [n^10*(n^4 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
    

Formula

From G. C. Greubel, Oct 11 2019: (Start)
G.f.: x*(1 +8689*x +2290554*x^2 +99340346*x^3 +1285757375*x^4 +6420936303*x^5 +13986239532*x^6 +13986239532*x^7 +6420936303*x^8 +1285757375*x^9 +99340346*x^10 +2290554*x^11 +8689*x^12 +x^13)/(1-x)^15.
E.g.f.: x*(2 +8702*x +798300*x^2 +10425850*x^3 +40117560*x^4 +63459200*x^5 +49335160*x^6 +20913070*x^7 +5135175*x^8 +752753*x^9 + 66066*x^10 +3367*x^11 +91*x^12 +x^13)*exp(x)/2. (End)
Showing 1-6 of 6 results.