cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A181860 a(n) = lcm(n^2, swinging_factorial(n)).

Original entry on oeis.org

0, 1, 4, 18, 48, 150, 180, 980, 2240, 5670, 6300, 30492, 11088, 156156, 168168, 257400, 1647360, 3719430, 3938220, 17551820, 18475600, 81477396, 85357272, 373173528, 389398464, 1690097500, 1757701400, 7582037400, 3931426800, 33738060600
Offset: 0

Views

Author

Peter Luschny, Nov 21 2010

Keywords

Crossrefs

Programs

  • Maple
    A181860 := n -> ilcm(n^2,n!/iquo(n,2)!^2);
  • Mathematica
    Join[{0},sf[n_]:=n!/Quotient[n, 2]!^2; a[n_]:=LCM[n^2, sf[n]]; Table[a[n], {n, 30}] ] (* Jean-François Alcover, Jun 28 2013 *)
  • PARI
    a(n) = lcm(n^2, n!/(n\2)!^2); \\ Michel Marcus, Mar 06 2018

Formula

a(n) = lcm(A000290(n), A056040(n)).

Extensions

a(26)-a(29) from Vincenzo Librandi, Mar 05 2018

A343431 Part of n composed of prime factors of the form 6k-1.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 11, 1, 1, 1, 5, 1, 17, 1, 1, 5, 1, 11, 23, 1, 25, 1, 1, 1, 29, 5, 1, 1, 11, 17, 5, 1, 1, 1, 1, 5, 41, 1, 1, 11, 5, 23, 47, 1, 1, 25, 17, 1, 53, 1, 55, 1, 1, 29, 59, 5, 1, 1, 1, 1, 5, 11, 1, 17, 23, 5, 71, 1, 1, 1, 25, 1, 11, 1, 1, 5, 1, 41, 83, 1, 85, 1, 29, 11, 89, 5
Offset: 1

Views

Author

Peter Munn, Apr 15 2021

Keywords

Comments

Completely multiplicative with a(p) = p if p is of the form 6k-1 and a(p) = 1 otherwise.
Largest term of A259548 that divides n.

Crossrefs

Equivalent sequence for distinct prime factors: A170825.
Equivalent sequences for prime factors of other forms: A000265 (2k+1), A343430 (3k-1), A170818 (4k+1), A097706 (4k-1), A248909 (6k+1), A065330 (6k+/-1), A065331 (<= 3), A355582 (<= 5).
Range of terms: A259548.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 6] == 5, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* after Amiram Eldar at A248909 *)
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if ((f[i, 1] + 1) % 6, f[i, 1] = 1); ); factorback(f); } \\ after Michel Marcus at A248909
    
  • Python
    from math import prod
    from sympy import factorint
    def A343431(n): return prod(p**e for p, e in factorint(n).items() if not (p+1)%6) # Chai Wah Wu, Dec 26 2022

Formula

a(n) = n / A065331(n) / A248909(n) = A065330(n) / A248909(n).

A170817 a(n) = product of distinct primes of form 4k+1 that divide n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 13, 1, 5, 1, 17, 1, 1, 5, 1, 1, 1, 1, 5, 13, 1, 1, 29, 5, 1, 1, 1, 17, 5, 1, 37, 1, 13, 5, 41, 1, 1, 1, 5, 1, 1, 1, 1, 5, 17, 13, 53, 1, 5, 1, 1, 29, 1, 5, 61, 1, 1, 1, 65, 1, 1, 17, 1, 5, 1, 1, 73, 37, 5, 1, 1, 13, 1, 5, 1, 41, 1, 1, 85, 1, 29, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2009

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul (i, i=map (x-> x[1], select (x-> isprime (x[1]) and irem (x[1], 4)=1, ifactors(n)[2]))): seq (a(n), n=1..120);
  • Mathematica
    Table[Times@@Select[Transpose[FactorInteger[n]][[1]],Mod[#,4]==1&], {n,90}] (* Harvey P. Dale, Dec 07 2012 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] % 4 == 1, f[i,1], 1));} \\ Amiram Eldar, Jun 09 2025

Extensions

Corrected and extended with Maple program by Alois P. Heinz, Dec 23 2009
Showing 1-3 of 3 results.