cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A220418 Express 1 - x - x^2 - x^3 - x^4 - ... as product (1 + g(1)*x) * (1 + g(2)*x^2) *(1 + g(3)*x^3) * ... and use a(n) = - g(n).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 18, 27, 54, 84, 186, 296, 630, 1008, 2106, 3711, 7710, 12924, 27594, 48528, 97902, 173352, 364722, 647504, 1340622, 2382660, 4918482, 9052392, 18512790, 33361776, 69273666, 127198287, 258155910, 475568220, 981288906, 1814542704, 3714566310
Offset: 1

Views

Author

Michel Marcus, Dec 14 2012

Keywords

Comments

This is the PPE (power product expansion) of A153881 (with offset 0).
When p is prime, a(p) = (2^p-2)/p (A064535).
From Petros Hadjicostas, Oct 04 2019: (Start)
This sequence appears as an example in Gingold and Knopfmacher (1995) starting at p. 1223.
In Section 3 of Gingold and Knopfmacher (1995), it is proved that, if f(z) = Product_{n >= 1} (1 + g(n))*z^n = 1/(Product_{n >= 1} (1 - h(n))*z^n), then g(2*n - 1) = h(2*n - 1) and Sum_{d|n} (1/d)*h(n/d)^d = -Sum_{d|n} (1/d)*(-g(n/d))^d. The same results were proved more than ten years later by Alkauskas (2008, 2009). [If we let a(n) = -g(n), then Alkauskas works with f(z) = Product_{n >= 1} (1 - a(n))*z^n; i.e., a(2*n - 1) = -h(2*n - 1) etc.]
The PPE of 1/(1 - x - x^2 - x^3 - x^4 - ...) is given in A290261, which is also studied in Gingold and Knopfmacher (1995, p. 1234).
(End)
The number of terms in the Zassenhaus formula exponent of order n, as computed by the algorithm by Casas, Murua & Nadinic, is equal to a(n) at least for n = 2..24. - Andrey Zabolotskiy, Apr 09 2023

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i<1, 1,
          b(n, i-1)+a(i)*b(n-i, min(n-i, i)))
        end:
    a:= proc(n) option remember; 2^n-b(n, n-1) end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i < 1, 1, b[n, i - 1] + a[i]*b[n - i, Min[n - i, i]]];
    a[n_] := a[n] = 2^n - b[n, n - 1] ;
    Array[a, 40] (* Jean-François Alcover, Jul 09 2018, after Alois P. Heinz *)
  • PARI
    a(m) = {default(seriesprecision, m+1); gk = vector(m); pol = 1 + sum(n=1, m, -x^n); gk[1] = polcoeff( pol, 1); for (k=2, m, pol = taylor(pol/(1+gk[k-1]*x^(k-1)), x); gk[k] = polcoeff(pol, k, x);); for (k=1, m, print1(-gk[k], ", "););}

Formula

g(1) = -1 and for k > 1, g(k) satisfies Sum_{d|k} (1/d)*(-g(k/d))^d = (2^k - 1)/k, where a(k) = -g(k). - Gevorg Hmayakyan, Jun 05 2016 [Corrected by Petros Hadjicostas, Oct 04 2019. See p. 1224 in Gingold and Knopfmacher (1995).]
From Petros Hadjicostas, Oct 04 2019: (Start)
a(2*n - 1) = A290261(2*n - 1) for n >= 1 because A290261 gives the PPE of 1/(1 - x - x^2 - x^3 - ...) = (1 - x)/(1 - 2*x).
Define (A(m,n): n,m >= 1) by A(m=1,n) = -1 for n >= 1, A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then a(n) = A(n,n). [Theorem 3 in Gingold et al. (1988).]
(End)

Extensions

Name edited by Petros Hadjicostas, Oct 04 2019

A220420 Express the Sum_{n>=0} p(n)*x^n, where p(n) is the partition function, as a product Product_{k>=1} (1 + a(k)*x^k).

Original entry on oeis.org

1, 2, 1, 4, 1, 0, 1, 14, 1, -4, 1, -8, 1, -16, 1, 196, 1, -54, 1, -92, 1, -184, 1, 144, 1, -628, 1, -1040, 1, -2160, 1, 41102, 1, -7708, 1, -12932, 1, -27592, 1, 54020, 1, -98496, 1, -173720, 1, -364720, 1, 853624, 1, -1341970, 1, -2383916, 1, -4918536, 1
Offset: 1

Views

Author

Michel Marcus, Dec 14 2012

Keywords

Comments

This is the PPE (power product expansion) of A000041.
When n is odd, a(n) = 1.
When n is even, a(n) = 2, 4, 0, 14, -4, -8, -16, 196, -54, -92, -184, 144, -628, -1040, -2160, 41102, ...
Alkauskas (2016, Problem 3, p. 3) conjectured that a(8*k+2), a(8*k+4), and a(8*k+6) are all negative, and a(8*k) is positive for k >= 1. [This statement is not wholly true for k = 0.] - Petros Hadjicostas, Oct 07 2019

Crossrefs

Programs

  • Mathematica
    terms = 55; sol[0] = {};
    sol[m_] := sol[m] = Join[sol[m - 1], If[OddQ[m], {a[m] -> 1}, First @ Solve[Thread[Table[PartitionsP[n], {n, 0, m}] == CoefficientList[ (Product[1 + a[n]*x^n, {n, 1, m}] /. sol[m - 1]) + O[x]^(m + 1), x]]]]];
    Array[a, terms] /. sol[terms] (* Jean-François Alcover, Dec 06 2018, corrected Oct 03 2019 *)
    (* Second program: *)
    A[m_, n_] := A[m, n] = Which[m == 1, PartitionsP[n], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1] ];
    a[n_] := A[n, n];
    a /@ Range[1, 55] (* Jean-François Alcover, Oct 03 2019, using the formula given by Petros Hadjicostas *)
  • PARI
    a(m) = {default(seriesprecision, m+1); ak = vector(m); pol = 1 / eta(x + x * O(x^m)); ak[1] = polcoeff(pol, 1); for (k=2, m, pol = taylor(pol / (1+ak[k-1]*x^(k-1)), x); ak[k] = polcoeff(pol, k, x);); for (k=1, m, print1(ak[k], ", "););}

Formula

From Petros Hadjicostas, Oct 04 2019: (Start)
Define (A(m,n): n,m >= 1) by A(m=1,n) = p(n) = A000041(n) for n >= 1, A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then a(n) = A(n,n). [Theorem 3 in Gingold et al. (1988).]
a(n) = Sum_{s|n} s/n + Sum_{s|n, s > 1} (-a(n/s))^s/s. [Eq. (1) in Alkauskas (2008, 2009).]
(End)

A170909 Denominators in Taylor series expansion of Product_{n >= 1} (1+x^n/n!).

Original entry on oeis.org

1, 1, 2, 3, 24, 15, 360, 5040, 40320, 11340, 1814400, 39916800, 47900160, 6227020800, 7925299200, 1307674368000, 20922789888000, 11115232128000, 3201186852864000, 24329020081766400, 48658040163532800, 51090942171709440000, 1124000727777607680000, 5170403347776995328000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 30 2010

Keywords

Examples

			1 + x + (1/2)*x^2 + (2/3)*x^3 + (5/24)*x^4 + (2/15)*x^5 + (41/360)*x^6 + (169/5040)*x^7 + ...
		

Crossrefs

Cf. A170908.

Programs

  • Mathematica
    nmax=23; Denominator[CoefficientList[Series[Product[ (1+x^n/n!),{n,nmax}],{x,0,nmax}],x]] (* Stefano Spezia, Jun 24 2024 *)

Extensions

a(23) from Stefano Spezia, Jun 24 2024

A170920 Write x*cot(x) = Product_{n>=1} (1 + g_n*x^(2*n)); a(n) = numerator(g_n).

Original entry on oeis.org

-1, -1, -1, -16, -91, -58844, -73267, -1196588, -49830764, -1715330699, -35249288479, -374085503198546, -732125336837021, -779432268293710651, -30015706187367326893, -183998031852529374082, -46789354983174555461, -115977125342651266593554, -248130101882943187003954597, -13171311382437535379302071714878
Offset: 1

Views

Author

N. J. A. Sloane, Jan 31 2010

Keywords

Examples

			-1/3, -1/45, -1/105, -16/4725, -91/66825, -58844/127702575, -73267/383107725, ...
		

Crossrefs

Programs

  • Maple
    t1:=x*cot(x);
    L:=100;
    t0:=series(t1, x, L);
    g:=[];
    M:=20; # number of terms to get
    t2:=t0:
    for n from 1 to M do
    t3:=coeff(t2, x, 2*n); t2:=series(t2/(1+t3*x^(2*n)), x, L); g:=[op(g), t3];
    od:
    g;
    g1:=map(numer, g);
    g2:=map(denom, g);

Extensions

Corrected definition and terms - N. J. A. Sloane, Oct 04 2019 (thanks to Petros Hadjicostas for pointing out that something was wrong).
Showing 1-4 of 4 results.