A170931 Extended Lucas L(n,i) = n*(L(n,i-1) + L(n,i-2)) = a^i + b^i where d = sqrt(n*(n+4)); a=(n+d)/2; b=(n-d)/2.
2, 4, 24, 112, 544, 2624, 12672, 61184, 295424, 1426432, 6887424, 33255424, 160571392, 775307264, 3743514624, 18075287552, 87275208704, 421401985024, 2034708774912, 9824443039744, 47436607258624, 229044201193472
Offset: 0
Examples
L(n,0)=2, L(n,1)=n.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Kival Ngaokrajang, Illustration of initial terms, Vitruvian Man
- Index entries for linear recurrences with constant coefficients, signature (4, 4).
Crossrefs
Programs
-
Magma
I:=[2,4]; [n le 5 select I[n] else 4*Self(n-1)+4*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2017
-
Mathematica
CoefficientList[Series[2 (1 - 2 x) / (1 - 4 x - 4 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 16 2015 *) LinearRecurrence[{4,4},{2,4},30] (* Harvey P. Dale, Sep 03 2016 *)
-
PARI
x='x+O('x^30); Vec(2*(1-2*x)/(1 - 4*x - 4*x^2)) \\ G. C. Greubel, Dec 21 2017
Formula
From R. J. Mathar, Feb 05 2010: (Start)
a(n) = 2*A084128(n) = 4*a(n-1) + 4*a(n-2).
G.f.: 2*(1-2*x)/(1 - 4*x - 4*x^2). (End)
Comments