cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A094013 Expansion of (1-4*x)/(1-4*x-4*x^2).

Original entry on oeis.org

1, 0, 4, 16, 80, 384, 1856, 8960, 43264, 208896, 1008640, 4870144, 23515136, 113541120, 548225024, 2647064576, 12781158400, 61712891904, 297976201216, 1438756372480, 6946930294784, 33542746669056, 161958707855360
Offset: 0

Views

Author

Paul Barry, Apr 21 2004

Keywords

Comments

Inverse binomial transform of A000129(2n-1). a(n+2)/4 = A057087(n).
a(n) is the irrational part of circle radii in nested circles and squares inspired by Vitruvian Man, starting with a square whose sides are of length 4 (in some units). The radius of the circle is an integer in the real quadratic number field Q(sqrt(2)), namely R(n) = A(n-1) + B(m)*sqrt(2) with A(-1)=1, for n >= 1, A(n-1) = A170931(n-1)*-1^(n-1); and B(n) = A094013(n)*-1^n. See illustrations in the links. - Kival Ngaokrajang, Feb 15 2015

Crossrefs

Programs

  • Magma
    [n le 2 select 2-n else 4*(Self(n-1) + Self(n-2)): n in [1..41]]; // G. C. Greubel, Dec 04 2021
    
  • Mathematica
    CoefficientList[Series[(1-4x)/(1-4x-4x^2),{x,0,40}],x] (* or *) LinearRecurrence[{4,4},{1,0},40] (* Harvey P. Dale, May 21 2012 *)
    Table[2^n*Fibonacci[n-1, 2], {n, 0, 40}] (* G. C. Greubel, Dec 04 2021 *)
  • PARI
    Vec((1-4*x)/(1-4*x-4*x^2) + O(x^30)) \\ Michel Marcus, Feb 15 2015
    
  • Sage
    [2^n*lucas_number1(n-1, 2, -1) for n in (0..40)] # G. C. Greubel, Dec 04 2021

Formula

a(n) = (2 + 2*sqrt(2))^n*(1/2 - sqrt(2)/4) + (2 - 2*sqrt(2))^n*(1/2 + sqrt(2)/4).
a(n) = 4*a(n-1) + 4*a(n-2); a(0)=1, a(1)=0. - Philippe Deléham, Nov 03 2008
a(n) = A057087(n) - 4*A057087(n-1). - R. J. Mathar, Jan 15 2013
From G. C. Greubel, Dec 04 2021: (Start)
a(n) = 2^n * A000129(n-1).
E.g.f.: exp(2*x)*( cosh(2*sqrt(2)*x) - (1/sqrt(2))*sinh(2*sqrt(2)*x) ). (End)

A191347 Array read by antidiagonals: ((floor(sqrt(n)) + sqrt(n))^k + (floor(sqrt(n)) - sqrt(n))^k)/2 for columns k >= 0 and rows n >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 3, 1, 1, 0, 8, 7, 4, 2, 1, 0, 16, 17, 10, 8, 2, 1, 0, 32, 41, 28, 32, 9, 2, 1, 0, 64, 99, 76, 128, 38, 10, 2, 1, 0, 128, 239, 208, 512, 161, 44, 11, 2, 1, 0, 256, 577, 568, 2048, 682, 196, 50, 12, 3, 1
Offset: 0

Views

Author

Charles L. Hohn, May 31 2011

Keywords

Examples

			1, 0,  0,   0,    0,    0,     0,      0,       0,        0,        0, ...
1, 1,  2,   4,    8,   16,    32,     64,     128,      256,      512, ...
1, 1,  3,   7,   17,   41,    99,    239,     577,     1393,     3363, ...
1, 1,  4,  10,   28,   76,   208,    568,    1552,     4240,    11584, ...
1, 2,  8,  32,  128,  512,  2048,   8192,   32768,   131072,   524288, ...
1, 2,  9,  38,  161,  682,  2889,  12238,   51841,   219602,   930249, ...
1, 2, 10,  44,  196,  872,  3880,  17264,   76816,   341792,  1520800, ...
1, 2, 11,  50,  233, 1082,  5027,  23354,  108497,   504050,  2341691, ...
1, 2, 12,  56,  272, 1312,  6336,  30592,  147712,   713216,  3443712, ...
1, 3, 18, 108,  648, 3888, 23328, 139968,  839808,  5038848, 30233088, ...
1, 3, 19, 117,  721, 4443, 27379, 168717, 1039681,  6406803, 39480499, ...
1, 3, 20, 126,  796, 5028, 31760, 200616, 1267216,  8004528, 50561600, ...
1, 3, 21, 135,  873, 5643, 36477, 235791, 1524177,  9852435, 63687141, ...
1, 3, 22, 144,  952, 6288, 41536, 274368, 1812352, 11971584, 79078912, ...
1, 3, 23, 153, 1033, 6963, 46943, 316473, 2133553, 14383683, 96969863, ...
...
		

Crossrefs

Row 1 is A000007, row 2 is A011782, row 3 is A001333, row 4 is A026150, row 5 is A081294, row 6 is A001077, row 7 is A084059, row 8 is A108851, row 9 is A084128, row 10 is A081341, row 11 is A005667, row 13 is A141041.
Row 3*2 is A002203, row 4*2 is A080040, row 5*2 is A155543, row 6*2 is A014448, row 8*2 is A080042, row 9*2 is A170931, row 11*2 is A085447.
Cf. A191348 which uses ceiling() in place of floor().

Programs

  • PARI
    T(n, k) = if (n==0, k==0, my(x=sqrtint(n)); sum(i=0, (k+1)\2, binomial(k, 2*i)*x^(k-2*i)*n^i));
    matrix(9,9, n, k, T(n-1,k-1)) \\ Michel Marcus, Aug 22 2019
    
  • PARI
    T(n, k) = if (k==0, 1, if (k==1, sqrtint(n), T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2));
    matrix(9, 9, n, k, T(n-1, k-1)) \\ Charles L. Hohn, Aug 22 2019

Formula

For each row n>=0 let T(n,0)=1 and T(n,1)=floor(sqrt(n)), then for each column k>=2: T(n,k)=T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2. - Charles L. Hohn, Aug 22 2019
T(n, k) = Sum_{i=0..floor((k+1)/2)} binomial(k, 2*i)*floor(sqrt(n))^(k-2*i)*n^i for n > 0, with T(0, 0) = 1 and T(0, k) = 0 for k > 0. - Michel Marcus, Aug 23 2019

A255162 Rational part of circle radii in nested circles and hexagons (see comment).

Original entry on oeis.org

2, 0, 24, -288, 3744, -48384, 625536, -8087040, 104550912, -1351655424, 17474476032, -225913577472, 2920656642048, -37758842634240, 488153991315456, -6310954007396352, 81589295984541696, -1054802999903256576, 13636707550653579264
Offset: 0

Views

Author

Kival Ngaokrajang, Feb 15 2015

Keywords

Comments

Inspired by Vitruvian Man, but using hexagons instead of squares, starting with a hexagon whose sides are of length 4 (in some units). The radius of the circle is an integer in the real quadratic number field Q(sqrt(3)), namely R(n) = A(n) + B(n)*sqrt(3) with A(0)=2, A(n) = a(n), and B(0) = 1, B(n) = A255163(n). See illustrations in the links.

Crossrefs

Programs

  • PARI
    {a=2;b=1;print1(a,", ");for(n=1,30,c=12*b-6*a;d=4*a-6*b;print1(c,", ");a=c;b=d)}

Formula

Conjectures from Colin Barker, Feb 15 2015: (Start)
a(n) = -12*a(n-1) + 12*a(n-2).
G.f.: -2*(12*x+1) / (12*x^2 - 12*x - 1).
(End)

A255163 Irrational parts of circle radii in nested circles and hexagons (see comment).

Original entry on oeis.org

1, 2, -12, 168, -2160, 27936, -361152, 4669056, -60362496, 780378624, -10088893440, 130431264768, -1686241898496, 21800077959168, -281835838291968, 3643630995013632, -47105601999667200, 608990795936169984, -7873156775230046208
Offset: 0

Views

Author

Kival Ngaokrajang, Feb 15 2015

Keywords

Comments

Inspired by Vitruvian Man, but using hexagons instead of squares, starting with a hexagon whose sides are of length 4 (in some units). The radius of the circle is an integer in the real quadratic number field Q(sqrt(3)), namely R(n) = A(n) + B(n)*sqrt(3) with A(0)=2, A(n) = A255162(n), and B(0) = 1, B(n) = a(n). See illustrations in the links.

Crossrefs

Programs

  • PARI
    {a=2;b=1;print1(b,", ");for(n=1,30,c=12*b-6*a;d=4*a-6*b;print1(d,", ");a=c;b=d)}

Formula

Conjectures from Colin Barker, Feb 15 2015: (Start)
a(n) = -12*a(n-1) + 12*a(n-2).
G.f.: -(14*x+1) / (12*x^2-12*x-1).
(End)
Showing 1-4 of 4 results.