cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A221463 T(n,k)=Number of 0..k arrays of length n with each element unequal to at least one neighbor, starting with 0.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 3, 4, 2, 0, 4, 9, 12, 3, 0, 5, 16, 36, 32, 5, 0, 6, 25, 80, 135, 88, 8, 0, 7, 36, 150, 384, 513, 240, 13, 0, 8, 49, 252, 875, 1856, 1944, 656, 21, 0, 9, 64, 392, 1728, 5125, 8960, 7371, 1792, 34, 0, 10, 81, 576, 3087, 11880, 30000, 43264, 27945, 4896, 55, 0, 11
Offset: 1

Views

Author

R. H. Hardin, general recursion proved by Robert Israel in the Sequence Fans Mailing List, Jan 17 2013

Keywords

Comments

Table starts
..0.....0.......0........0.........0..........0..........0...........0
..1.....2.......3........4.........5..........6..........7...........8
..1.....4.......9.......16........25.........36.........49..........64
..2....12......36.......80.......150........252........392.........576
..3....32.....135......384.......875.......1728.......3087........5120
..5....88.....513.....1856......5125......11880......24353.......45568
..8...240....1944.....8960.....30000......81648.....192080......405504
.13...656....7371....43264....175625.....561168....1515031.....3608576
.21..1792...27945...208896...1028125....3856896...11949777....32112640
.34..4896..105948..1008640...6018750...26508384...94253656...285769728
.55.13376..401679..4870144..35234375..182191680..743424031..2543058944
.89.36544.1522881.23515136.206265625.1252200384.5863743809.22630629376

Examples

			Some solutions for n=6 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..4....2....1....3....3....2....2....1....4....2....3....1....3....2....3....3
..1....4....0....1....2....4....3....0....2....0....3....3....2....0....0....4
..0....0....3....4....2....3....2....1....0....3....2....4....3....3....4....1
..1....2....1....2....1....0....3....4....0....1....3....1....3....0....2....0
..0....3....2....3....3....1....4....0....4....2....0....0....0....4....0....3
		

Crossrefs

Column 1 is A000045(n-1)
Column 2 is A028860(n+1)
Column 3 is A106435(n-1)
Column 4 is A094013
Column 5 is A106565(n-1)
Row 2 is A000027
Row 3 is A000290
Row 4 is A011379

Formula

Recursion for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +2*a(n-2)
k=3: a(n) = 3*a(n-1) +3*a(n-2)
k=4: a(n) = 4*a(n-1) +4*a(n-2)
k=5: a(n) = 5*a(n-1) +5*a(n-2)
k=6: a(n) = 6*a(n-1) +6*a(n-2)
k=7: a(n) = 7*a(n-1) +7*a(n-2)
Empirical for row n:
n=2: a(k) = 1*k
n=3: a(k) = 1*k^2
n=4: a(k) = 1*k^3 + 1*k^2
n=5: a(k) = 1*k^4 + 2*k^3
n=6: a(k) = 1*k^5 + 3*k^4 + 1*k^3
n=7: a(k) = 1*k^6 + 4*k^5 + 3*k^4
n=8: a(k) = 1*k^7 + 5*k^6 + 6*k^5 + 1*k^4
n=9: a(k) = 1*k^8 + 6*k^7 + 10*k^6 + 4*k^5
n=10: a(k) = 1*k^9 + 7*k^8 + 15*k^7 + 10*k^6 + 1*k^5
n=11: a(k) = 1*k^10 + 8*k^9 + 21*k^8 + 20*k^7 + 5*k^6
n=12: a(k) = 1*k^11 + 9*k^10 + 28*k^9 + 35*k^8 + 15*k^7 + 1*k^6
n=13: a(k) = 1*k^12 + 10*k^11 + 36*k^10 + 56*k^9 + 35*k^8 + 6*k^7
n=14: a(k) = 1*k^13 + 11*k^12 + 45*k^11 + 84*k^10 + 70*k^9 + 21*k^8 + 1*k^7
n=15: a(k) = 1*k^14 + 12*k^13 + 55*k^12 + 120*k^11 + 126*k^10 + 56*k^9 + 7*k^8
Apparently then T(n,k) = sum { binomial(n-2-i,i)*k^(n-1-i) , 0<=2*i<=n-2 }.
The formula reduces to T(n,k) = [4*k^(n-1)*(1+G)^(2*n-2) +4^n] /[2^(n+1) *G *(1+G)^(n-1)] for even n and to T(n,k) = [4*k^(n-1) *(1+G)^(2*n-2) -4^n] /[2^(n+1) *G *(1+G)^(n-1)] for odd n, where G=sqrt(1+4/k). - R. J. Mathar, Jan 21 2013

A094014 Expansion of (1-2*x)/(1-8*x^2).

Original entry on oeis.org

1, -2, 8, -16, 64, -128, 512, -1024, 4096, -8192, 32768, -65536, 262144, -524288, 2097152, -4194304, 16777216, -33554432, 134217728, -268435456, 1073741824, -2147483648, 8589934592, -17179869184, 68719476736, -137438953472
Offset: 0

Views

Author

Paul Barry, Apr 21 2004

Keywords

Comments

Second inverse binomial transform of A094013. Third inverse binomial transform of A000129(2n-1).
The unsigned sequence has g.f. (1+2*x)/(1-8*x^2) and abs(a(n)) = 2^(3*n/2)*(1/2 + sqrt(2)/4 + (1/2 - sqrt(2)/4)*(-1)^n).

Crossrefs

Programs

  • Magma
    [n le 2 select (-2)^(n-1) else 8*Self(n-2): n in [1..41]]; // G. C. Greubel, Dec 04 2021
    
  • Mathematica
    LinearRecurrence[{0,8}, {1,-2}, 40] (* G. C. Greubel, Dec 04 2021 *)
  • Sage
    [(-2)^n*2^(n//2) for n in (0..40)] # G. C. Greubel, Dec 04 2021

Formula

a(n) = (2*sqrt(2))^n*(1/2 - sqrt(2)/4) + (-2*sqrt(2))^n*(1/2 + sqrt(2)/4).
a(n) = (-2)^n * A016116(n). - R. J. Mathar, Apr 28 2008
Abs(a(n)) = A113836(n+1) - A113836(n) for n > 0. - Reinhard Zumkeller, Feb 22 2010
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = Sum_{k=0..n} A158020(n,k)*3^k. - Philippe Deléham, Dec 01 2011
E.g.f.: cosh(2*sqrt(2)*x) - (1/sqrt(2))*sinh(2*sqrt(2)*x). - G. C. Greubel, Dec 04 2021

A170931 Extended Lucas L(n,i) = n*(L(n,i-1) + L(n,i-2)) = a^i + b^i where d = sqrt(n*(n+4)); a=(n+d)/2; b=(n-d)/2.

Original entry on oeis.org

2, 4, 24, 112, 544, 2624, 12672, 61184, 295424, 1426432, 6887424, 33255424, 160571392, 775307264, 3743514624, 18075287552, 87275208704, 421401985024, 2034708774912, 9824443039744, 47436607258624, 229044201193472
Offset: 0

Views

Author

Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Feb 04 2010

Keywords

Comments

Sequence gives the rational part of the radii of the circles in nested circles and squares inspired by Vitruvian Man, starting with a square whose sides are of length 4 (in some units). The radius of the circle is an integer in the real quadratic number field Q(sqrt(2)), namely R(n) = A(n-1) + B(n)*sqrt(2) with A(-1)=1, for n >= 1, A(n-1) = A170931(n-1)*-1^(n-1); and B(n) = A094013(n)*-1^n. See illustrations in the links. - Kival Ngaokrajang, Feb 15 2015

Examples

			L(n,0)=2, L(n,1)=n.
		

Crossrefs

Cf. similar sequences with d=sqrt(n*(n+k)): A000032 (k=1, classic Lucas), A080040 (k=2), A085480 (k=3).

Programs

  • Magma
    I:=[2,4]; [n le 5 select I[n] else 4*Self(n-1)+4*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    CoefficientList[Series[2 (1 - 2 x) / (1 - 4 x - 4 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 16 2015 *)
    LinearRecurrence[{4,4},{2,4},30] (* Harvey P. Dale, Sep 03 2016 *)
  • PARI
    x='x+O('x^30); Vec(2*(1-2*x)/(1 - 4*x - 4*x^2)) \\ G. C. Greubel, Dec 21 2017
    

Formula

From R. J. Mathar, Feb 05 2010: (Start)
a(n) = 2*A084128(n) = 4*a(n-1) + 4*a(n-2).
G.f.: 2*(1-2*x)/(1 - 4*x - 4*x^2). (End)

A255162 Rational part of circle radii in nested circles and hexagons (see comment).

Original entry on oeis.org

2, 0, 24, -288, 3744, -48384, 625536, -8087040, 104550912, -1351655424, 17474476032, -225913577472, 2920656642048, -37758842634240, 488153991315456, -6310954007396352, 81589295984541696, -1054802999903256576, 13636707550653579264
Offset: 0

Views

Author

Kival Ngaokrajang, Feb 15 2015

Keywords

Comments

Inspired by Vitruvian Man, but using hexagons instead of squares, starting with a hexagon whose sides are of length 4 (in some units). The radius of the circle is an integer in the real quadratic number field Q(sqrt(3)), namely R(n) = A(n) + B(n)*sqrt(3) with A(0)=2, A(n) = a(n), and B(0) = 1, B(n) = A255163(n). See illustrations in the links.

Crossrefs

Programs

  • PARI
    {a=2;b=1;print1(a,", ");for(n=1,30,c=12*b-6*a;d=4*a-6*b;print1(c,", ");a=c;b=d)}

Formula

Conjectures from Colin Barker, Feb 15 2015: (Start)
a(n) = -12*a(n-1) + 12*a(n-2).
G.f.: -2*(12*x+1) / (12*x^2 - 12*x - 1).
(End)

A255163 Irrational parts of circle radii in nested circles and hexagons (see comment).

Original entry on oeis.org

1, 2, -12, 168, -2160, 27936, -361152, 4669056, -60362496, 780378624, -10088893440, 130431264768, -1686241898496, 21800077959168, -281835838291968, 3643630995013632, -47105601999667200, 608990795936169984, -7873156775230046208
Offset: 0

Views

Author

Kival Ngaokrajang, Feb 15 2015

Keywords

Comments

Inspired by Vitruvian Man, but using hexagons instead of squares, starting with a hexagon whose sides are of length 4 (in some units). The radius of the circle is an integer in the real quadratic number field Q(sqrt(3)), namely R(n) = A(n) + B(n)*sqrt(3) with A(0)=2, A(n) = A255162(n), and B(0) = 1, B(n) = a(n). See illustrations in the links.

Crossrefs

Programs

  • PARI
    {a=2;b=1;print1(b,", ");for(n=1,30,c=12*b-6*a;d=4*a-6*b;print1(d,", ");a=c;b=d)}

Formula

Conjectures from Colin Barker, Feb 15 2015: (Start)
a(n) = -12*a(n-1) + 12*a(n-2).
G.f.: -(14*x+1) / (12*x^2-12*x-1).
(End)

A106568 Expansion of 4*x/(1 - 4*x - 4*x^2).

Original entry on oeis.org

0, 4, 16, 80, 384, 1856, 8960, 43264, 208896, 1008640, 4870144, 23515136, 113541120, 548225024, 2647064576, 12781158400, 61712891904, 297976201216, 1438756372480, 6946930294784, 33542746669056, 161958707855360, 782005818097664, 3775858103812096, 18231455687639040
Offset: 0

Views

Author

Roger L. Bagula, May 30 2005

Keywords

Comments

This sequence is part of a class of sequences with the properties: a(n) = m*(a(n-1) + a(n-2)) with a(0) = 0 and a(1) = m, g.f.: m*x/(1 - m*x - m*x^2), and have the Binet form m*(alpha^n - beta^n)/(alpha - beta) where 2*alpha = m + sqrt(m^2 + 4*m) and 2*beta = p - sqrt(m^2 + 4*m). - G. C. Greubel, Sep 06 2021

Crossrefs

Sequences of the form a(n) = m*(a(n-1) + a(n-2)): A000045 (m=1), A028860 (m=2), A106435 (m=3), A094013 (m=4), A106565 (m=5), A221461 (m=6), A221462 (m=7).

Programs

  • Magma
    [n le 2 select 4*(n-1) else 4*(Self(n-1) +Self(n-2)): n in [1..41]]; // G. C. Greubel, Sep 06 2021
    
  • Maple
    A106568 := n -> ifelse(n=0, 0, 4^(n)*hypergeom([(1-n)/2, 1-n/2], [1-n], -1)):
    seq(simplify(A106568(n)), n = 0..24);  # Peter Luschny, Mar 30 2025
  • Mathematica
    LinearRecurrence[{4,4}, {0,4}, 40] (* G. C. Greubel, Sep 06 2021 *)
  • Sage
    [2^(n+1)*lucas_number1(n,2,-1) for n in (0..40)] # G. C. Greubel, Sep 06 2021

Formula

a(n) = 4 * A057087(n).
a(n) = A094013(n+1). - R. J. Mathar, Aug 24 2008
From Philippe Deléham, Sep 19 2009: (Start)
a(n) = 4*a(n-1) + 4*a(n-2) for n > 2; a(0) = 0, a(1)=4.
G.f.: 4*x/(1 - 4*x - 4*x^2). (End)
G.f.: Q(0) - 1, where Q(k) = 1 + 2*(1+2*x)*x + 2*(2*k+3)*x - 2*x*(2*k+1 +2*x+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 04 2013
a(n) = 2^(n+1)*A000129(n). - G. C. Greubel, Sep 06 2021
a(n) = 4^n*hypergeom([(1-n)/2, 1-n/2], [1-n], -1) for n > 0. - Peter Luschny, Mar 30 2025

Extensions

Edited by N. J. A. Sloane, Apr 30 2006
Simpler name using o.g.f. by Joerg Arndt, Oct 05 2013
Showing 1-6 of 6 results.